Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A universal pathway for kinesin stepping

Abstract

Kinesin-1 is an ATP-driven, processive motor that transports cargo along microtubules in a tightly regulated stepping cycle. Efficient gating mechanisms ensure that the sequence of kinetic events proceeds in the proper order, generating a large number of successive reaction cycles. To study gating, we created two mutant constructs with extended neck-linkers and measured their properties using single-molecule optical trapping and ensemble fluorescence techniques. Owing to a reduction in the inter-head tension, the constructs access an otherwise rarely populated conformational state in which both motor heads remain bound to the microtubule. ATP-dependent, processive backstepping and futile hydrolysis were observed under moderate hindering loads. On the basis of measurements, we formulated a comprehensive model for kinesin motion that incorporates reaction pathways for both forward and backward stepping. In addition to inter-head tension, we found that neck-linker orientation is also responsible for ensuring gating in kinesin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule records and backstepping velocity for Kin6AA.
Figure 2: Bidirectionality of Kin6AA as a function of load and ATP concentration.
Figure 3: Model for stepping by kinesin dimers, showing forward-stepping, backward-stepping and futile-hydrolysis pathways.
Figure 4: Fluorescence data for Kin6AA and KinWT with TMR probes attached to both neck-linkers.
Figure 5: Binding of 2′dmT to Kin6AA.

Similar content being viewed by others

References

  1. Svoboda, K., Schmidt, C.F., Schnapp, B.J. & Block, S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Asbury, C.L., Fehr, A.N. & Block, S.M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nat. Cell Biol. 5, 1079–1082 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Yildiz, A., Tomishige, M., Vale, R.D. & Selvin, P.R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Block, S.M., Goldstein, L.S. & Schnapp, B.J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Coy, D.L., Wagenbach, M. & Howard, J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274, 3667–3671 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hua, W., Young, E.C., Fleming, M.L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Schnitzer, M.J. & Block, S.M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Svoboda, K. & Block, S.M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Block, S.M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guydosh, N.R. & Block, S.M. Not so lame after all: kinesin still walks with a hobbled head. J. Gen. Physiol. 130, 441–444 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenfeld, S.S., Fordyce, P.M., Jefferson, G.M., King, P.H. & Block, S.M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Yildiz, A., Tomishige, M., Gennerich, A. & Vale, R.D. Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030–1041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kozielski, F. et al. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Hyeon, C. & Onuchic, J.N. Internal strain regulates the nucleotide binding site of the kinesin leading head. Proc. Natl. Acad. Sci. USA 104, 2175–2180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hariharan, V. & Hancock, W.O. Insights into the mechanical properties of the kinesin neck-linker domain from sequence analysis and molecular dynamics simulations. Cell Mol. Bioengineering 2, 177–189 (2009).

    Article  CAS  Google Scholar 

  17. Guydosh, N.R. & Block, S.M. Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc. Natl. Acad. Sci. USA 103, 8054–8059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klumpp, L.M., Hoenger, A. & Gilbert, S.P. Kinesin′s second step. Proc. Natl. Acad. Sci. USA 101, 3444–3449 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crevel, I.M. et al. What kinesin does at roadblocks: the coordination mechanism for molecular walking. EMBO J. 23, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Schief, W.R., Clark, R.H., Crevenna, A.H. & Howard, J. Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proc. Natl. Acad. Sci. USA 101, 1183–1188 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Carter, N.J. & Cross, R.A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Hyeon, C., Klumpp, S. & Onuchic, J.N. Kinesin′s backsteps under mechanical load. Phys. Chem. Chem. Phys. 11, 4899–4910 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Liepelt, S. & Lipowsky, R. Kinesin′s network of chemomechanical motor cycles. Phys. Rev. Lett. 98, 258102 (2007).

    Article  PubMed  Google Scholar 

  25. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Visscher, K., Schnitzer, M.J. & Block, S.M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Valentine, M.T. et al. Precision steering of an optical trap by electro-optic deflection. Opt. Lett. 33, 599–601 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Coppin, C.M., Pierce, D.W., Hsu, L. & Vale, R.D. The load dependence of kinesin′s mechanical cycle. Proc. Natl. Acad. Sci. USA 94, 8539–8544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Svoboda, K., Mitra, P.P. & Block, S.M. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl. Acad. Sci. USA 91, 11782–11786 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaevitz, J.W., Block, S.M. & Schnitzer, M.J. Statistical kinetics of macromolecular dynamics. Biophys. J. 89, 2277–2285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chemla, Y.R., Moffitt, J.R. & Bustamante, C. Exact solutions for kinetic models of macromolecular dynamics. J. Phys. Chem. B 112, 6025–6044 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Valentine, M.T., Fordyce, P.M., Krzysiak, T.C., Gilbert, S.P. & Block, S.M. Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat. Cell Biol. 8, 470–476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moffitt, J.R., Chemla, Y.R. & Bustamante, C. Methods in statistical kinetics. Methods Enzymol. 475, 221–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Guydosh, N.R. & Block, S.M. Direct observation of the binding state of the kinesin head to the microtubule. Nature 461, 125–128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asenjo, A.B. & Sosa, H. A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl. Acad. Sci. USA 106, 5657–5662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mori, T., Vale, R.D. & Tomishige, M. How kinesin waits between steps. Nature 450, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Toprak, E., Yildiz, A., Hoffman, M.T., Rosenfeld, S.S. & Selvin, P.R. Why kinesin is so processive. Proc. Natl. Acad. Sci. USA 106, 12717–12722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Valentine, M.T. & Gilbert, S.P. To step or not to step? How biochemistry and mechanics influence processivity in Kinesin and Eg5. Curr. Opin. Cell Biol. 19, 75–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Hackney, D.D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alonso, M.C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120–123 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hackney, D.D., Stock, M.F., Moore, J. & Patterson, R.A. Modulation of kinesin half-site ADP release and kinetic processivity by a spacer between the head groups. Biochemistry 42, 12011–12018 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Blackman, M.J. et al. Structural and biochemical characterization of a fluorogenic rhodamine-labeled malarial protease substrate. Biochemistry 41, 12244–12252 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kawaguchi, K. & Ishiwata, S. Nucleotide-dependent single- to double-headed binding of kinesin. Science 291, 667–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Gutiérrez-Medina, B., Fehr, A.N. & Block, S.M. Direct measurements of kinesin torsional properties reveal flexible domains and occasional stalk reversals during stepping. Proc. Natl. Acad. Sci. USA 106, 17007–17012 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schnitzer, M.J., Visscher, K. & Block, S.M. Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Rosenfeld, S.S., Xing, J., Jefferson, G.M., Cheung, H.C. & King, P.H. Measuring kinesin′s first step. J. Biol. Chem. 277, 36731–36739 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Behnke-Parks, W.M. et al. Loop L5 acts as a conformational latch in the mitotic Kinesin Eg5. J. Biol. Chem. 286, 5242–5253 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Hiratsuka, T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim. Biophys. Acta 742, 496–508 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.M.B. acknowledges support from grant GM51453, and S.S.R. acknowledges support from grant AR048565 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

B.E.C., W.M.B.-P. and J.O.L.A. designed and carried out experiments, collected and analyzed data, and cowrote the paper. B.E.C. and J.O.L.A. carried out modeling and fits. S.M.B. and S.S.R. helped to design experiments and analyze results, and cowrote the paper.

Corresponding author

Correspondence to Steven M Block.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 493 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clancy, B., Behnke-Parks, W., Andreasson, J. et al. A universal pathway for kinesin stepping. Nat Struct Mol Biol 18, 1020–1027 (2011). https://doi.org/10.1038/nsmb.2104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2104

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing