Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transfer RNA–mediated regulation of ribosome dynamics during protein synthesis

Abstract

Translocation of tRNAs through the ribosome during protein synthesis involves large-scale structural rearrangement of the ribosome and ribosome-bound tRNAs that is accompanied by extensive and dynamic remodeling of tRNA-ribosome interactions. How the rearrangement of individual tRNA-ribosome interactions influences tRNA movement during translocation, however, remains largely unknown. To address this question, we used single-molecule FRET to characterize the dynamics of ribosomal pretranslocation (PRE) complex analogs carrying either wild-type or systematically mutagenized tRNAs. Our data reveal how specific tRNA-ribosome interactions regulate the rate of PRE complex rearrangement into a critical, on-pathway translocation intermediate and how these interactions control the stability of the resulting configuration. Notably, our results suggest that the conformational flexibility of the tRNA molecule has a crucial role in directing the structural dynamics of the PRE complex during translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global states model of the PRE complex, L1-L9 labeling strategy and PRE−A complexes.
Figure 2: Sample smFRET versus time trajectories and relative occupancies of smFRET trajectory subpopulations.
Figure 3: Steady-state smFRET measurements of PRE−A complexes carrying wild-type and elongator tRNAs.
Figure 4: Design of tRNAfMet2 mutants.
Figure 5: Steady-state smFRET measurements on PRE−A complexes carrying tRNAfMet2 mutants.
Figure 6: P-site tRNA-ribosome interactions within the GS1 and GS2 state of a PRE complex and comparative structural analysis of ribosome-free and ribosome-bound tRNAs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Frank, J., Gao, H., Sengupta, J., Gao, N. & Taylor, D.J. The process of mRNA-tRNA translocation. Proc. Natl. Acad. Sci. USA 104, 19671–19678 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Korostelev, A. & Noller, H.F. The ribosome in focus: new structures bring new insights. Trends Biochem. Sci. 32, 434–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Shoji, S., Walker, S.E. & Fredrick, K. Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem. Biol. 4, 93–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blanchard, S.C., Kim, H.D., Gonzalez, R.L. Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frank, J. & Gonzalez, R.L. Jr. Structure and dynamics of a processive brownian motor: the translating ribosome. Annu. Rev. Biochem. 79, 381–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fei, J., Kosuri, P., MacDougall, D.D. & Gonzalez, R.L. Jr. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Fei, J. Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl. Acad. Sci. USA 106, 15702–15707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cornish, P.V., Ermolenko, D.N., Noller, H.F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cornish, P.V. et al. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl. Acad. Sci. USA 106, 2571–2576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dorner, S., Brunelle, J.L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat. Struct. Mol. Biol. 13, 234–241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Munro, J.B., Altman, R.B., Tung, C.S., Sanbonmatsu, K.Y. & Blanchard, S.C. A fast dynamic mode of the EF-G-bound ribosome. EMBO J. 29, 770–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Munro, J.B., Wasserman, M.R., Altman, R.B., Wang, L. & Blanchard, S.C. Correlated conformational events in EF-G and the ribosome regulate translocation. Nat. Struct. Mol. Biol. 17, 1470–1477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Ermolenko, D.N. et al. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 370, 530–540 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Munro, J.B. et al. Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc. Natl. Acad. Sci. USA 107, 709–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Zavialov, A.V. & Ehrenberg, M. Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114, 113–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Modolell, J., Cabrer, B. & Vaquez, D. The interaction of elongation factor G with N-acetylphenylalanyl transfer RNA-ribosome complexes. Proc. Natl. Acad. Sci. USA 70, 3561–3565 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Connell, S.R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Studer, S.M., Feinberg, J.S. & Joseph, S. Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome. J. Mol. Biol. 327, 369–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Villa, E. et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl. Acad. Sci. USA 106, 1063–1068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmeing, T.M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Voorhees, R.M., Schmeing, T.M., Kelley, A.C. & Ramakrishnan, V. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishii, S., Kuroki, K. & Imamoto, F. tRNAMetf2 gene in the leader region of the nusA operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 81, 409–413 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Varshney, U., Lee, C.P. & RajBhandary, U.L. From elongator tRNA to initiator tRNA. Proc. Natl. Acad. Sci. USA 90, 2305–2309 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. RajBhandary, U.L. Initiator transfer RNAs. J. Bacteriol. 176, 547–552 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laursen, B.S., Sorensen, H.P., Mortensen, K.K. & Sperling-Petersen, H.U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer, C., Stortchevoi, A., Kohrer, C., Varshney, U. & RajBhandary, U.L. Initiator tRNA and its role in initiation of protein synthesis. Cold Spring Harb. Symp. Quant. Biol. 66, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Kolitz, S.E. & Lorsch, J.R. Eukaryotic initiator tRNA: finely tuned and ready for action. FEBS Lett. 584, 396–404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Julián, P. et al. Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc. Natl. Acad. Sci. USA 105, 16924–16927 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Samaha, R.R., Green, R. & Noller, H.F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377, 309–314 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Fredrick, K. & Noller, H.F. Catalysis of ribosomal translocation by sparsomycin. Science 300, 1159–1162 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Southworth, D.R. & Green, R. Ribosomal translocation: sparsomycin pushes the button. Curr. Biol. 13, R652–R654 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Ali, I.K., Lancaster, L., Feinberg, J., Joseph, S. & Noller, H.F. Deletion of a conserved, central ribosomal intersubunit RNA bridge. Mol. Cell 23, 865–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Feinberg, J.S. & Joseph, S. Identification of molecular interactions between P-site tRNA and the ribosome essential for translocation. Proc. Natl. Acad. Sci. USA 98, 11120–11125 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trabuco, L.G. et al. The role of L1 stalk-tRNA interaction in the ribosome elongation cycle. J. Mol. Biol. 402, 741–760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rich, A. & RajBhandary, U.L. Transfer RNA: molecular structure, sequence, and properties. Annu. Rev. Biochem. 45, 805–860 (1976).

    Article  CAS  PubMed  Google Scholar 

  42. Alexander, R.W., Eargle, J. & Luthey-Schulten, Z. Experimental and computational determination of tRNA dynamics. FEBS Lett. 584, 376–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Daniel, W.E. Jr. & Cohn, M. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives. Biochemistry 15, 3917–3924 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. Barraud, P., Schmitt, E., Mechulam, Y., Dardel, F. & Tisne, C. A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Nucleic Acids Res. 36, 4894–4901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mandal, N. & RajBhandary, U.L. Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J. Bacteriol. 174, 7827–7830 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uhlenbeck, O.C. RNA biophysics has come of age. Biopolymers 91, 811–814 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Dunkle, J.A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aitken, C.E. & Puglisi, J.D. Following the intersubunit conformation of the ribosome during translation in real time. Nat. Struct. Mol. Biol. 17, 793–800 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.3r1. (2010).

  51. Alberts, B.M. & Frey, L. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature 227, 1313–1318 (1970).

    Article  CAS  PubMed  Google Scholar 

  52. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wyatt, J.R., Chastain, M. & Puglisi, J.D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques 11, 764–769 (1991).

    CAS  PubMed  Google Scholar 

  54. Sternberg, S.H., Fei, J., Prywes, N., McGrath, K.A. & Gonzalez, R.L. Jr. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat. Struct. Mol. Biol. 16, 861–868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fei, J. et al. A highly-purified, fluorescently-labeled in vitro translation system for single-molecule studies of protein synthesis. Methods Enzymol. 472, 221–259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, C.P., Mandal, N., Dyson, M.R. & RajBhandary, U.L. The discriminator base influences tRNA structure at the end of the acceptor stem and possibly its interaction with proteins. Proc. Natl. Acad. Sci. USA 90, 7149–7152 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mandal, N., Mangroo, D., Dalluge, J.J., McCloskey, J.A. & Rajbhandary, U.L. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli. RNA 2, 473–482 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stone, M.D. et al. Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature 446, 458–461 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gonzalez, R.L. Jr., Chu, S. & Puglisi, J.D. Thiostrepton inhibition of tRNA delivery to the ribosome. RNA 13, 2091–2097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bronson, J.E., Fei, J., Hofman, J.M., Gonzalez, R.L. Jr. & Wiggins, C.H. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97, 3196–3205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank U. RajBhandary for providing us with the plasmids and strains necessary to generate, overexpress and purify all tRNAfMet mutants reported here; J. Frank, H. Gao and X. Aguirrezabala for providing us with structural models for GS1 and GS2; K. Schulten and B. Liu for providing us with a quasi-atomic-resolution model of a hybrid P/E–configured tRNA; J. Cate for providing us with an early preprint of ref. 47; D. MacDougall, W. Ning, S. Mitra, C. Perez and J. Cate for valuable discussions and comments on the manuscript; and C. Perez for managing the Gonzalez laboratory. This work was supported by grants to R.L.G. from the Burroughs Wellcome Fund (CABS 1004856), the US National Science Foundation (MCB 0644262) and the US National Institute of General Medical Sciences (GM 084288). A.C.R. was supported, in part, by the Amgen Scholars Program at Columbia University.

Author information

Authors and Affiliations

Authors

Contributions

J.F. and R.L.G. Jr. designed the research; J.F. and A.C.R. carried out the experiments and analyzed the data; J.E.B. helped with the data analysis; J.F., A.C.R. and R.L.G. Jr. wrote the manuscript; all authors approved the final manuscript.

Corresponding author

Correspondence to Ruben L Gonzalez Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods and Supplementary Discussion (PDF 6271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, J., Richard, A., Bronson, J. et al. Transfer RNA–mediated regulation of ribosome dynamics during protein synthesis. Nat Struct Mol Biol 18, 1043–1051 (2011). https://doi.org/10.1038/nsmb.2098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing