Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unraveling the mechanism of BRCA2 in homologous recombination

Abstract

BRCA2 is the product of a breast cancer susceptibility gene in humans and the founding member of an emerging family of proteins present throughout the eukaryotic domain that serve in homologous recombination. The function of BRCA2 in recombination is to control RAD51, a protein that catalyzes homologous pairing and DNA strand exchange. By physically interacting with both RAD51 and single-stranded DNA, BRCA2 mediates delivery of RAD51 preferentially to sites of single-stranded DNA (ssDNA) exposed as a result of DNA damage or replication problems. Through its action, BRCA2 helps restore and maintain integrity of the genome. This review highlights recent studies on BRCA2 and its orthologs that have begun to illuminate the molecular mechanisms by which these proteins control homologous recombination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA repair by homologous recombination.
Figure 2: BRCA2 organization and DBD domain structure.

Similar content being viewed by others

References

  1. Budzowska, M. & Kanaar, R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem. Biophys. 53, 17–31 (2009).

    PubMed  Google Scholar 

  2. Heyer, W.D., Ehmsen, K.T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mimitou, E.P. & Symington, L.S. Nucleases and helicases take center stage in homologous recombination. Trends Biochem. Sci. 34, 264–272 (2009).

    CAS  PubMed  Google Scholar 

  4. Moynahan, M.E. & Jasin, M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11, 196–207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).

    CAS  PubMed  Google Scholar 

  6. Thorslund, T. & West, S.C. BRCA2: a universal recombinase regulator. Oncogene 26, 7720–7730 (2007).

    CAS  PubMed  Google Scholar 

  7. Venkitaraman, A.R. Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu. Rev. Pathol. 4, 461–487 (2009).

    CAS  PubMed  Google Scholar 

  8. Holthausen, J.T., Wyman, C. & Kanaar, R. Regulation of DNA strand exchange in homologous recombination. DNA Repair (Amst.) 9, 1264–1272 (2010).

    CAS  Google Scholar 

  9. Bugreev, D.V., Hanaoka, F. & Mazin, A.V. Rad54 dissociates homologous recombination intermediates by branch migration. Nat. Struct. Mol. Biol. 14, 746–753 (2007).

    CAS  PubMed  Google Scholar 

  10. McIlwraith, M.J. & West, S.C. DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol. Cell 29, 510–516 (2008).

    CAS  PubMed  Google Scholar 

  11. Sugiyama, T., Kantake, N., Wu, Y. & Kowalczykowski, S.C. Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture. EMBO J. 25, 5539–5548 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lao, J.P., Oh, S.D., Shinohara, M., Shinohara, A. & Hunter, N. Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol. Cell 29, 517–524 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krogh, B.O. & Symington, L.S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    CAS  PubMed  Google Scholar 

  14. Rijkers, T. et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18, 6423–6429 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamaguchi-Iwai, Y. et al. Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol. Cell. Biol. 18, 6430–6435 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stark, J.M., Pierce, A.J., Oh, J., Pastink, A. & Jasin, M. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol. Cell. Biol. 24, 9305–9316 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739–750 (2006).

    CAS  PubMed  Google Scholar 

  18. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    CAS  PubMed  Google Scholar 

  19. Tavtigian, S.V. et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat. Genet. 12, 333–337 (1996).

    CAS  PubMed  Google Scholar 

  20. Bork, P., Blomberg, N. & Nilges, M. Internal repeats in the BRCA2 protein sequence. Nat. Genet. 13, 22–23 (1996).

    CAS  PubMed  Google Scholar 

  21. Bignell, G., Micklem, G., Stratton, M.R., Ashworth, A. & Wooster, R. The BRC repeats are conserved in mammalian BRCA2 proteins. Hum. Mol. Genet. 6, 53–58 (1997).

    CAS  PubMed  Google Scholar 

  22. Sharan, S.K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997).

    CAS  PubMed  Google Scholar 

  23. Mizuta, R. et al. RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc. Natl. Acad. Sci. USA 94, 6927–6932 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim, D.S. & Hasty, P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16, 7133–7143 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ludwig, T., Chapman, D.L., Papaioannou, V.E. & Efstratiadis, A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 11, 1226–1241 (1997).

    CAS  PubMed  Google Scholar 

  26. Tsuzuki, T. et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93, 6236–6240 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328 (1998).

    CAS  PubMed  Google Scholar 

  28. Wong, A.K., Pero, R., Ormonde, P.A., Tavtigian, S.V. & Bartel, P.L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272, 31941–31944 (1997).

    CAS  PubMed  Google Scholar 

  29. Chen, C.F., Chen, P.L., Zhong, Q., Sharp, Z.D. & Lee, W.H. Expression of BRC repeats in breast cancer cells disrupts the BRCA2-Rad51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control. J. Biol. Chem. 274, 32931–32935 (1999).

    CAS  PubMed  Google Scholar 

  30. Patel, K.J. et al. Involvement of Brca2 in DNA repair. Mol. Cell 1, 347–357 (1998).

    CAS  PubMed  Google Scholar 

  31. Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat. Genet. 17, 423–430 (1997).

    CAS  PubMed  Google Scholar 

  32. Morimatsu, M., Donoho, G. & Hasty, P. Cells deleted for Brca2 COOH terminus exhibit hypersensitivity to gamma-radiation and premature senescence. Cancer Res. 58, 3441–3447 (1998).

    CAS  PubMed  Google Scholar 

  33. Tutt, A. et al. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol. 9, 1107–1110 (1999).

    CAS  PubMed  Google Scholar 

  34. Yu, V.P. et al. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 14, 1400–1406 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. German, J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 72, 393–406 (1993).

    CAS  Google Scholar 

  36. Goggins, M. et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 56, 5360–5364 (1996).

    CAS  PubMed  Google Scholar 

  37. Abbott, D.W., Freeman, M.L. & Holt, J.T. Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J. Natl. Cancer Inst. 90, 978–985 (1998).

    CAS  PubMed  Google Scholar 

  38. Yuan, S.S. et al. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59, 3547–3551 (1999).

    CAS  PubMed  Google Scholar 

  39. Moynahan, M.E., Pierce, A.J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    CAS  PubMed  Google Scholar 

  40. Xia, F. et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc. Natl. Acad. Sci. USA 98, 8644–8649 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Warren, M. et al. Structural analysis of the chicken BRCA2 gene facilitates identification of functional domains and disease causing mutations. Hum. Mol. Genet. 11, 841–851 (2002).

    CAS  PubMed  Google Scholar 

  42. Lo, T., Pellegrini, L., Venkitaraman, A.R. & Blundell, T.L. Sequence fingerprints in BRCA2 and RAD51: implications for DNA repair and cancer. DNA Repair (Amst.) 2, 1015–1028 (2003).

    CAS  Google Scholar 

  43. Kojic, M., Kostrub, C.F., Buchman, A.R. & Holloman, W.K. BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol. Cell 10, 683–691 (2002).

    CAS  PubMed  Google Scholar 

  44. Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1-ssDNA structure. Science 297, 1837–1848 (2002).

    CAS  PubMed  Google Scholar 

  45. Marston, N.J. et al. Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol. Cell. Biol. 19, 4633–4642 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bochkarev, A. & Bochkareva, E. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr. Opin. Struct. Biol. 14, 36–42 (2004).

    CAS  PubMed  Google Scholar 

  47. San Filippo, J. et al. Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J. Biol. Chem. 281, 11649–11657 (2006).

    CAS  PubMed  Google Scholar 

  48. Kojic, M., Zhou, Q., Lisby, M. & Holloman, W.K. Brh2-Dss1 interplay enables properly controlled recombination in Ustilago maydis. Mol. Cell. Biol. 25, 2547–2557 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, Q., Kojic, M. & Holloman, W.K. DNA-binding domain within the Brh2 N terminus Is the primary interaction site for association with DNA. J. Biol. Chem. 284, 8265–8273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Edwards, S.L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    CAS  PubMed  Google Scholar 

  51. Bryant, H.E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  52. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  53. Saeki, H. et al. Suppression of the DNA repair defects of BRCA2-deficient cells with heterologous protein fusions. Proc. Natl. Acad. Sci. USA 103, 8768–8773 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287–293 (2002).

    CAS  PubMed  Google Scholar 

  55. Rajendra, E. & Venkitaraman, A.R. Two modules in the BRC repeats of BRCA2 mediate structural and functional interactions with the RAD51 recombinase. Nucleic Acids Res. 38, 82–96 (2010).

    CAS  PubMed  Google Scholar 

  56. Carreira, A. et al. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell 136, 1032–1043 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shivji, M.K. et al. The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single- versus double-stranded DNA to stimulate strand exchange. Proc. Natl. Acad. Sci. USA 106, 13254–13259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bugreev, D.V. & Mazin, A.V. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc. Natl. Acad. Sci. USA 101, 9988–9993 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Petalcorin, M.I., Sandall, J., Wigley, D.B. & Boulton, S.J. CeBRC-2 stimulates D-loop formation by RAD-51 and promotes DNA single-strand annealing. J. Mol. Biol. 361, 231–242 (2006).

    CAS  PubMed  Google Scholar 

  60. Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005).

    CAS  PubMed  Google Scholar 

  61. Davies, O.R. & Pellegrini, L. Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat. Struct. Mol. Biol. 14, 475–483 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Esashi, F., Galkin, V.E., Yu, X., Egelman, E.H. & West, S.C. Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat. Struct. Mol. Biol. 14, 468–474 (2007).

    CAS  PubMed  Google Scholar 

  63. Ayoub, N. et al. The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry. Curr. Biol. 19, 1075–1085 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hashimoto, Y., Chaudhuri, A.R., Lopes, M. & Costanzo, V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17, 1305–1311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Thorslund, T., Esashi, F. & West, S.C. Interactions between human BRCA2 protein and the meiosis-specific recombinase DMC1. EMBO J. 26, 2915–2922 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kojic, M., Zhou, Q., Fan, J. & Holloman, W.K. Mutational analysis of Brh2 reveals requirements for compensating mediator functions. Mol. Microbiol. 79, 180–191 (2011).

    CAS  PubMed  Google Scholar 

  68. Yang, H., Li, Q., Fan, J., Holloman, W.K. & Pavletich, N.P. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433, 653–657 (2005).

    CAS  PubMed  Google Scholar 

  69. Mazloum, N., Zhou, Q. & Holloman, W.K. DNA binding, annealing, and strand exchange activities of Brh2 protein from Ustilago maydis. Biochemistry 46, 7163–7173 (2007).

    CAS  PubMed  Google Scholar 

  70. Mazloum, N., Zhou, Q. & Holloman, W.K. D-loop formation by Brh2 protein of Ustilago maydis. Proc. Natl. Acad. Sci. USA 105, 524–529 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, Y., Kantake, N., Sugiyama, T. & Kowalczykowski, S.C. Rad51 protein controls Rad52-mediated DNA annealing. J. Biol. Chem. 283, 14883–14892 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mazloum, N. & Holloman, W.K. Brh2 promotes a template-switching reaction enabling recombinational bypass of lesions during DNA synthesis. Mol. Cell 36, 620–630 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jensen, R.B., Carreira, A. & Kowalczykowski, S.C. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467, 678–683 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Thorslund, T. et al. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat. Struct. Mol. Biol. 17, 1263–1265 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, J., Doty, T., Gibson, B. & Heyer, W.D. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat. Struct. Mol. Biol. 17, 1260–1262 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Xia, B. et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell 22, 719–729 (2006).

    CAS  PubMed  Google Scholar 

  77. Buisson, R. et al. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 17, 1247–1254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rahman, N. et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 39, 165–167 (2007).

    CAS  PubMed  Google Scholar 

  79. Tischkowitz, M. et al. Analysis of PALB2/FANCN-associated breast cancer families. Proc. Natl. Acad. Sci. USA 104, 6788–6793 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dray, E. et al. Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2. Nat. Struct. Mol. Biol. 17, 1255–1259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, J. & Heyer, W.D. Who's who in human recombination: BRCA2 and RAD52. Proc. Natl. Acad. Sci. USA 108, 441–442 (2011).

    CAS  PubMed  Google Scholar 

  82. Kojic, M., Mao, N., Zhou, Q., Lisby, M. & Holloman, W.K. Compensatory role for Rad52 during recombinational repair in Ustilago maydis. Mol. Microbiol. 67, 1156–1168 (2008).

    CAS  PubMed  Google Scholar 

  83. de Vries, F.A. et al. Inactivation of RAD52 aggravates RAD54 defects in mice but not in Schizosaccharomyces pombe. DNA Repair (Amst.) 4, 1121–1128 (2005).

    CAS  Google Scholar 

  84. Fujimori, A. et al. Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells. EMBO J. 20, 5513–5520 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Feng, Z. et al. Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc. Natl. Acad. Sci. USA 108, 686–691 (2011).

    CAS  PubMed  Google Scholar 

  86. Benson, F.E., Baumann, P. & West, S.C. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391, 401–404 (1998).

    CAS  PubMed  Google Scholar 

  87. Jackson, D., Dhar, K., Wahl, J.K., Wold, M.S. & Borgstahl, G.E. Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J. Mol. Biol. 321, 133–148 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to L. Symington (Columbia University) and laboratory members M. Kojic, Q. Zhou and N. Mazloum for stimulating conversations. Apologies are extended to colleagues whose work was not cited because of space limitations. Research in the author's laboratory is supported by grants GM042482 and GM079859 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William K Holloman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holloman, W. Unraveling the mechanism of BRCA2 in homologous recombination. Nat Struct Mol Biol 18, 748–754 (2011). https://doi.org/10.1038/nsmb.2096

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing