Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An autoinhibitory helix in the C-terminal region of phospholipase C-β mediates Gαq activation

Abstract

The enzyme phospholipase C-β (PLCβ) is a crucial regulator of intracellular calcium levels whose activity is controlled by heptahelical receptors that couple to members of the Gq family of heterotrimeric G proteins. We have determined atomic structures of two invertebrate homologs of PLCβ (PLC21) from cephalopod retina and identified a helix from the C-terminal regulatory region that interacts with a conserved surface of the catalytic core of the enzyme. Mutations designed to disrupt the analogous interaction in human PLCβ3 considerably increase basal activity and diminish stimulation by Gαq. Gαq binding requires displacement of the autoinhibitory helix from the catalytic core, thus providing an allosteric mechanism for activation of PLCβ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary and tertiary structures of PLCβ family members and comparison of cephalopod PLC21 with the Gαq–PLCβ3 complex.
Figure 2: Interactions of Hα2′ with the catalytic core.
Figure 3: Functional studies of PLCβ3 variants.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rebecchi, M.J. & Pentyala, S.N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291–1335 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Taylor, S.J. & Exton, J.H. Two a subunits of the Gq class of G proteins stimulate phosphoinositide phospholipase C-β1 activity. FEBS Lett. 286, 214–216 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Smrcka, A.V., Hepler, J.R., Brown, K.O. & Sternweis, P.C. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq . Science 251, 804–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Park, D., Jhon, D.Y., Lee, C.W., Lee, K.H. & Rhee, S.G. Activation of phospholipase C isozymes by G protein βγ subunits. J. Biol. Chem. 268, 4573–4576 (1993).

    CAS  PubMed  Google Scholar 

  6. Boyer, J.L., Waldo, G.L. & Harden, T.K. βγ-subunit activation of G-protein-regulated phospholipase C. J. Biol. Chem. 267, 25451–25456 (1992).

    CAS  PubMed  Google Scholar 

  7. Smrcka, A.V. & Sternweis, P.C. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C β by G protein α and βγ subunits. J. Biol. Chem. 268, 9667–9674 (1993).

    CAS  PubMed  Google Scholar 

  8. Sternweis, P.C. & Smrcka, A.V. G proteins in signal transduction: the regulation of phospholipase C. Ciba Found. Symp. 176, 96–106, discussion 106–111 (1993).

    CAS  PubMed  Google Scholar 

  9. Illenberger, D. et al. Stimulation of phospholipase C-β2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J. 17, 6241–6249 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harden, T.K., Hicks, S.N. & Sondek, J. Phospholipase C isozymes as effectors of Ras superfamily GTPases. J. Lipid Res. 50, S243–S248 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sugden, P.H. & Clerk, A. Cellular mechanisms of cardiac hypertrophy. J. Mol. Med. 76, 725–746 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Berridge, M.J. Cardiac calcium signalling. Biochem. Soc. Trans. 31, 930–933 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Ju, H., Zhao, S., Tappia, P.S., Panagia, V. & Dixon, I.M. Expression of Gqα and PLC-β in scar and border tissue in heart failure due to myocardial infarction. Circulation 97, 892–899 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Woodcock, E.A., Kistler, P.M. & Ju, Y.-K. Phosphoinositide signalling and cardiac arrhythmias. Cardiovasc. Res. 82, 286–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Schneuwly, S., Burg, M.G., Lending, C., Perdew, M.H. & Pak, W.L. Properties of photoreceptor-specific phospholipase C encoded by the norpA gene of Drosophila melanogaster. J. Biol. Chem. 266, 24314–24319 (1991).

    CAS  PubMed  Google Scholar 

  16. Mitchell, J., Gutierrez, J. & Northup, J.K. Purification, characterization, and partial amino acid sequence of a G protein-activated phospholipase C from squid photoreceptors. J. Biol. Chem. 270, 854–859 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Shortridge, R.D. et al. A Drosophila phospholipase C gene that is expressed in the central nervous system. J. Biol. Chem. 266, 12474–12480 (1991).

    CAS  PubMed  Google Scholar 

  18. Essen, L.O. et al. Structural mapping of the catalytic mechanism for a mammalian phosphoinositide-specific phospholipase C. Biochemistry 36, 1704–1718 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Ellis, M.V. et al. Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of PLCδ1. J. Biol. Chem. 273, 11650–11659 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Suh, P.G. et al. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 41, 415–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Jezyk, M.R. et al. Crystal structure of Rac1 bound to its effector phospholipase C-β2. Nat. Struct. Mol. Biol. 13, 1135–1140 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Hicks, S.N. et al. General and versatile autoinhibition of PLC isozymes. Mol. Cell 31, 383–394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waldo, G.L. et al. Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science 330, 974–980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, W. & Neer, E.J. Reassembly of phospholipase C-β2 from separated domains: analysis of basal and G protein-stimulated activities. J. Biol. Chem. 276, 2503–2508 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Schnabel, P. & Camps, M. Activation of a phospholipase Cβ2 deletion mutant by limited proteolysis. Biochem. J. 330, 461–468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ilkaeva, O., Kinch, L.N., Paulssen, R.H. & Ross, E.M. Mutations in the carboxyl-terminal domain of phospholipase C-β1 delineate the dimer interface and a potential Gαq interaction site. J. Biol. Chem. 277, 4294–4300 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, C.G., Park, D. & Rhee, S.G. The role of carboxyl-terminal basic amino acids in Gqα-dependent activation, particulate association, and nuclear localization of phospholipase C-β1. J. Biol. Chem. 271, 21187–21192 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Park, D., Jhon, D.Y., Lee, C.W., Ryu, S.H. & Rhee, S.G. Removal of the carboxyl-terminal region of phospholipase C-β1 by calpain abolishes activation by Gαq . J. Biol. Chem. 268, 3710–3714 (1993).

    CAS  PubMed  Google Scholar 

  29. Singer, A.U., Waldo, G.L., Harden, T.K. & Sondek, J. A unique fold of phospholipase C-β mediates dimerization and interaction with Gαq . Nat. Struct. Biol. 9, 32–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Paulssen, R.H., Woodson, J., Liu, Z. & Ross, E.M. Carboxyl-terminal fragments of phospholipase C-β1 with intrinsic Gq GTPase-activating protein (GAP) activity. J. Biol. Chem. 271, 26622–26629 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, D., Jiang, H., Katz, A. & Simon, M.I. Identification of critical regions on phospholipase C-β1 required for activation by G-proteins. J. Biol. Chem. 268, 3704–3709 (1993).

    CAS  PubMed  Google Scholar 

  32. Koyanagi, M., Ono, K., Suga, H., Iwabe, N. & Miyata, T. Phospholipase C cDNAs from sponge and hydra: antiquity of genes involved in the inositol phospholipid signaling pathway. FEBS Lett. 439, 66–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Jhon, D.Y. et al. Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-β3. J. Biol. Chem. 268, 6654–6661 (1993).

    CAS  PubMed  Google Scholar 

  34. Shankaranarayanan, A. et al. Assembly of high order Gαq-effector complexes with RGS proteins. J. Biol. Chem. 283, 34923–34934 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gu, S. et al. Unique hydrophobic extension of the RGS2 amphipathic helix domain imparts increased plasma membrane binding and function relative to other RGS R4/B subfamily members. J. Biol. Chem. 282, 33064–33075 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Hepler, J.R. et al. Purification from Sf9 cells and characterization of recombinant Gqα and G11α. Activation of purified phospholipase C isozymes by Gα subunits. J. Biol. Chem. 268, 14367–14375 (1993).

    CAS  PubMed  Google Scholar 

  37. Lee, S.B., Shin, S.H., Hepler, J.R., Gilman, A.G. & Rhee, S.G. Activation of phospholipase C-β2 mutants by G protein αq and βγ subunits. J. Biol. Chem. 268, 25952–25957 (1993).

    CAS  PubMed  Google Scholar 

  38. Philip, F., Kadamur, G., Silos, R.G., Woodson, J. & Ross, E.M. Synergistic activation of phospholipase C-β3 by Gαq and Gβγ describes a simple two-state coincidence detector. Curr. Biol. 20, 1327–1335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woodcock, E.A. et al. Selective activation of the 'b' splice variant of phospholipase Cβ1 in chronically dilated human and mouse atria. J. Mol. Cell Cardiol. 47, 676–683 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Achour, L., Labbe-Jullie, C., Scott, M.G. & Marullo, S. An escort for GPCRs: implications for regulation of receptor density at the cell surface. Trends Pharmacol. Sci. 29, 528–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Jenco, J.M., Becker, K.P. & Morris, A.J. Membrane-binding properties of phospholipase C-β1 and phospholipase C-β2: role of the C-terminus and effects of polyphosphoinositides, G-proteins and Ca2+. Biochem. J. 327, 431–437 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson, C.M., Zucker, F.H. & Steitz, T.A. Space-filling models of kinase clefts and conformation changes. Science 204, 375–380 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Daniel, R.M. The upper limits of enzyme thermal stability. Enzyme Microb. Technol. 19, 74–79 (1996).

    Article  CAS  Google Scholar 

  44. Wu, D., Katz, A. & Simon, M.I. Activation of phospholipase Cβ2 by the α and βγ subunits of trimeric GTP-binding protein. Proc. Natl. Acad. Sci. USA 90, 5297–5301 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hurley, J.B. Molecular properties of the cGMP cascade of vertebrate photoreceptors. Annu. Rev. Physiol. 49, 793–812 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Slep, K.C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature 409, 1071–1077 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Arshavsky, V.Y., Lamb, T.D. & Pugh, E.N. Jr. G proteins and phototransduction. Annu. Rev. Physiol. 64, 153–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Sunahara, R.K. & Taussig, R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol. Interv. 2, 168–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Biddlecome, G.H., Berstein, G. & Ross, E.M. Regulation of phospholipase C-β1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. J. Biol. Chem. 271, 7999–8007 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Tesmer, V.M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & Tesmer, J.J. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gβγ complex. Science 310, 1686–1690 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Chan, P. et al. Purification of heterotrimeric G protein α subunits by GST-Ric-8 association: primary characterization of purified Gαolf . J. Biol. Chem. 286, 2625–2635 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Mezzasalma, T.M. et al. Enhancing recombinant protein quality and yield by protein stability profiling. J. Biomol. Screen. 12, 418–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ghosh, M. & Smrcka, A.V. Assay for G protein-dependent activation of phospholipase Cβ using purified protein components. Methods Mol. Biol. 237, 67–75 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Ross (University of Texas Southwestern Medical Center at Dallas) for the vector encoding human PLCβ3, and G. Tall (University of Rochester) for the baculovirus vector expressing glutathione S-transferase (GST)-tagged Ric8A and for insight into how to increase yields of Gαq, before publication of his work. We also thank P. Backlund (Section on Mass Spectrometry and Metabolism, National Institute of Child Health & Human Development) for mass spectrometry of PLC21 samples. This work was supported by US National Institutes of Health grants HL071818 and HL086865 (J.J.G.T.) and by the Intramural Research program of the National Institute on Deafness and Other Communication Disorders, US National Institutes of Health (J.K.N.). Our research used the Cell and Molecular Biology Core of the Michigan Diabetes Research and Training Center, supported by DK20572. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and Michigan's Technology Tri-Corridor (grant 085P1000817).

Author information

Authors and Affiliations

Authors

Contributions

A.M.L., V.M.T., J.K.N. and J.J.G.T. designed the overall experimental approach. J.G., S.C. and J.K.N. purified LPLC21 and SPLC21, and cloned and sequenced cDNA encoding SPLC21. K.C.S. crystallized LPLC21. A.M.L. crystallized SPLC21 and determined the crystal structures of LPLC21 and SPLC21. A.M.L. and V.M.T. cloned, expressed and purified human PLCβ3 variants. V.M.T. cloned, expressed and purified Gαq. A.M.L. did all activity-based assays. D.M.T. helped design and, together with V.D.D., conducted Thermo Fluor and FCPIA assays. A.M.L., V.M.T. and J.J.G.T. wrote the manuscript.

Corresponding authors

Correspondence to John K Northup or John J G Tesmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Methods (PDF 1095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyon, A., Tesmer, V., Dhamsania, V. et al. An autoinhibitory helix in the C-terminal region of phospholipase C-β mediates Gαq activation. Nat Struct Mol Biol 18, 999–1005 (2011). https://doi.org/10.1038/nsmb.2095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing