Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes

This article has been updated

Abstract

Efforts to catalog eukaryotic transcripts have uncovered many small RNAs (sRNAs) derived from gene termini and splice sites. Their biogenesis pathways are largely unknown, but a mechanism based on backtracking of RNA polymerase II (RNAPII) has been suggested. By sequencing transcripts 12–100 nucleotides in length from cells depleted of major RNA degradation enzymes and RNAs associated with Argonaute (AGO1/2) effector proteins, we provide mechanistic models for sRNA production. We suggest that neither splice site–associated (SSa) nor transcription start site–associated (TSSa) RNAs arise from RNAPII backtracking. Instead, SSa RNAs are largely degradation products of splicing intermediates, whereas TSSa RNAs probably derive from nascent RNAs protected by stalled RNAPII against nucleolysis. We also reveal new AGO1/2-associated RNAs derived from 3′ ends of introns and from mRNA 3′ UTRs that appear to draw from noncanonical microRNA biogenesis pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The majority of gene-derived sRNAs are decay products.
Figure 2: sRNAs around splice sites.
Figure 3: sRNA density around TSSs is dependent on promoter type and sRNA length.
Figure 4: TSSa RNAs are likely produced by protection of nascent RNA by stalled RNAPII.
Figure 5: Human tailed mirtrons.
Figure 6: AGO1/2-associating sRNAs located in 3′ UTRs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 21 August 2011

    In the version of this article initially published online, in Figure 5a, the x-axis tick marks and labels were placed incorrectly; in Figure 5c, there were two extraneous tracks; and in Figure 5d, the y-axis label was missing, a stem in the RNA was incorrectly colored in gray (instead of red) and the sRNA tracks were incorrectly shifted to the left. These errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10, 833–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Forrest, A.R. & Carninci, P. Whole genome transcriptome analysis. RNA Biol. 6, 107–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Taft, R.J., Kaplan, C.D., Simons, C. & Mattick, J.S. Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle 8, 2332–2338 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Seila, A.C., Core, L.J., Lis, J.T. & Sharp, P.A. Divergent transcription: a new feature of active promoters. Cell Cycle 8, 2557–2564 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Preker, P., Nielsen, J., Schierup, M.H. & Jensen, T.H. RNA polymerase plays both sides: vivid and bidirectional transcription around and upstream of active promoters. Cell Cycle 8, 1106–1107 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Berretta, J. & Morillon, A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 10, 973–982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hutvagner, G. & Simard, M.J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Peters, L. & Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell 26, 611–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009).

  14. Seila, A.C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taft, R.J. et al. Tiny RNAs associated with transcription start sites in animals. Nat. Genet. 41, 572–578 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Taft, R.J. et al. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat. Struct. Mol. Biol. 17, 1030–1034 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Kapranov, P. et al. New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature 466, 642–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Preker, P. et al. PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res. published online, doi:10.1093/nar/gkr370 (19 May 2011).

  19. Linsen, S.E. et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods 6, 474–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Gu, W. & Reines, D. Variation in the size of nascent RNA cleavage products as a function of transcript length and elongation competence. J. Biol. Chem. 270, 30441–30447 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Izban, M.G. & Luse, D.S. The increment of SII-facilitated transcript cleavage varies dramatically between elongation competent and incompetent RNA polymerase II ternary complexes. J. Biol. Chem. 268, 12874–12885 (1993).

    CAS  PubMed  Google Scholar 

  22. Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sandelin, A. et al. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 8, 424–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. & Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muse, G.W. et al. RNA polymerase is poised for activation across the genome. Nat. Genet. 39, 1507–1511 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rahl, P.B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rozowsky, J. et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol. 27, 66–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brueckner, F. et al. Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallogr. D Biol. Crystallogr. 65, 112–120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M. & Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruby, J.G., Jan, C.H. & Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Flynt, A.S., Greimann, J.C., Chung, W.J., Lima, C.D. & Lai, E.C. MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol. Cell 38, 900–907 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maroney, P.A., Chamnongpol, S., Souret, F. & Nilsen, T.W. Direct detection of small RNAs using splinted ligation. Nat. Protoc. 3, 279–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Burroughs, A.M. et al. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res. 20, 1398–1410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, C. et al. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol. Cell. Biol. 28, 3290–3300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jimeno-González, S., Haaning, L.L., Malagon, F. & Jensen, T.H. The yeast 5′–3′ exonuclease Rat1p functions during transcription elongation by RNA polymerase II. Mol. Cell 37, 580–587 (2010).

    Article  PubMed  Google Scholar 

  40. Berezikov, E., Chung, W.J., Willis, J., Cuppen, E. & Lai, E.C. Mammalian mirtron genes. Mol. Cell 28, 328–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Glazov, E.A. et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 18, 957–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Glazov, E.A. et al. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection. PLoS ONE 4, e6349 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chiang, H.R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chung, W.J. et al. Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res. 21, 286–300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Berezikov, E. et al. Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nat. Genet. 42, 6–9, author reply 9–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, Y. et al. RNA secondary structure in mutually exclusive splicing. Nat. Struct. Mol. Biol. 18, 159–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Gao, K., Masuda, A., Matsuura, T. & Ohno, K. Human branch point consensus sequence is yUnAy. Nucleic Acids Res. 36, 2257–2267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Halic, M. & Moazed, D. Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140, 504–516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, C. et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Malone, C.D. et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522–535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saito, K. et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 1296–1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Olivieri, D., Sykora, M.M., Sachidanandam, R., Mechtler, K. & Brennecke, J. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 29, 3301–3317 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robine, N. et al. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr. Biol. 19, 2066–2076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Ender, C. et al. A human snoRNA with microRNA-like functions. Mol. Cell 32, 519–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Rüdel, S., Flatley, A., Weinmann, L., Kremmer, E. & Meister, G. A multifunctional human Argonaute2-specific monoclonal antibody. RNA 14, 1244–1253 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhao, X., Valen, E., Parker, B. & Sandelin, A. Systematic clustering of transcription start site landscapes. PLoS ONE (in the press).

  60. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Jacquier, A.H. Lund, K. Adelman and members of the T.H.J. and A.S. laboratories for stimulating discussions. The following colleagues are acknowledged for sharing antibodies: J. Lykke-Andersen (Division of Biology, University of California, San Diego), D.L. Black (Howard Hughes Medical Institute, Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles), G.J. Pruijn (Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University) and K. Nishikura (The Wistar Institute). This work was supported by the Danish National Research Foundation, the Danish Cancer Society and the Lundbeck Foundation (to T.H.J.) and the EU 7th Framework Programme (FP7/2007–2013)/ERC grant agreement 204135, the Novo Nordisk Foundation, the Danish Cancer Society and the Lundbeck Foundation (to A.S.). E.V. was supported by the Danish Council for Independent Research. P.P. was the recipient of a research grant from the Lundbeck Foundation during part of this work. Work in the laboratory of G.M. was supported by the Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst (BayGene), the European Union (ERC grant 'sRNAs') and the Deutsche Forschungsgemeinschaft (DFG, Me 2064/2-2 and FOR855). Sequencing was carried out at the Beijing Genome Institute (BGI) in Shenzhen, China.

Author information

Authors and Affiliations

Authors

Contributions

E.V., P.P., P.R.A., G.M., A.S. and T.H.J. designed the experiments. P.P., P.R.A., C.E. and A.D. conducted the experiments. E.V., X.Z., Y.C. and A.S. did the bioinformatics analyses. E.V., P.P., P.R.A., G.M., A.S. and T.H.J. evaluated the results. E.V., P.P., P.R.A., X.Z., Y.C., A.S. and T.H.J. produced the figures. E.V., P.P., P.R.A., A.S. and T.H.J. wrote the manuscript.

Corresponding authors

Correspondence to Albin Sandelin or Torben Heick Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1 and 2 (PDF 10261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valen, E., Preker, P., Andersen, P. et al. Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat Struct Mol Biol 18, 1075–1082 (2011). https://doi.org/10.1038/nsmb.2091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing