Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC

Abstract

Plasmodium vivax and Plasmodium knowlesi invasion depends on the parasite Duffy-binding protein DBL domain (RII-PvDBP or RII-PkDBP) engaging the Duffy antigen receptor for chemokines (DARC) on red blood cells. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are competing models for whether Plasmodium ligands engage receptors as monomers or dimers, a question whose resolution has profound implications for parasite biology and control. We report crystallographic, solution and functional studies of RII-PvDBP showing that dimerization is required for and driven by receptor engagement. This work provides a unifying framework for prior studies and accounts for the action of naturally acquired blocking antibodies and the mechanism of immune evasion. We show that dimerization is conserved in DBL-domain receptor engagement and propose that receptor-mediated ligand dimerization drives receptor affinity and specificity. Because dimerization is prevalent in signaling, our studies raise the possibility that induced dimerization may activate pathways for invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RII-PvDBP is composed of three subdomains, and a sulfotyrosine pocket within a DARC-binding groove is formed by the RII-PvDBP dimer.
Figure 2: DARC binding drives dimerization of RII-PvDBP.
Figure 3: The sulfotyrosine pocket, DARC-binding groove and dimer interface are under selective pressure and are targeted by blocking antibodies.
Figure 4: RII-PvDBP's dimer interface and receptor binding site are conserved in VAR2CSA DBL6ɛ.
Figure 5: PvDBP binds DARC via a model of receptor-mediated ligand-dimerization.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Mason, S.J., Miller, L.H., Shiroishi, T., Dvorak, J.A. & McGinniss, M.H. The Duffy blood group determinants: their role in the susceptibility of human and animal erythrocytes to Plasmodium knowlesi malaria. Br. J. Haematol. 36, 327–335 (1977).

    Article  CAS  Google Scholar 

  2. Miller, L.H., Mason, S., Clyde, D. & McGinniss, M. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).

    Article  CAS  Google Scholar 

  3. Miller, L.H., Mason, S.J. & Dvorak, J.A. Erythrocytes receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189, 561–563 (1975).

    Article  CAS  Google Scholar 

  4. Adams, J.H. et al. A family of erythrocyte binding proteins of malaria parasites. Proc. Natl. Acad. Sci. USA 89, 7085–7089 (1992).

    Article  CAS  Google Scholar 

  5. Chitnis, C.E. & Miller, L. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med. 180, 497–506 (1994).

    Article  CAS  Google Scholar 

  6. Sim, B.K., Chitnis, C.E., Wasniowska, K., Hadley, T.J. & Miller, L.H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264, 1941–1944 (1994).

    Article  CAS  Google Scholar 

  7. Adams, J.H. et al. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell 63, 141–153 (1990).

    Article  CAS  Google Scholar 

  8. Haynes, J.D. et al. Receptor-like specificity of a Plasmodium knowlesi malarial protein that binds to Duffy antigen ligands on erythrocytes. J. Exp. Med. 167, 1873–1881 (1988).

    Article  CAS  Google Scholar 

  9. Reed, M.B. et al. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. Proc. Natl. Acad. Sci. USA 97, 7509–7514 (2000).

    Article  CAS  Google Scholar 

  10. Gaur, D., Mayer, D.C.G. & Miller, L.H. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int. J. Parasitol. 34, 1413–1429 (2004).

    Article  CAS  Google Scholar 

  11. Narum, D.L., Fuhrmann, S.R., Luu, T. & Sim, B.K.L. A novel Plasmodium falciparum erythrocyte binding protein-2 (EBP2/BAEBL) involved in erythrocyte receptor binding. Mol. Biochem. Parasitol. 119, 159–168 (2002).

    Article  CAS  Google Scholar 

  12. Adams, J.H., Blair, P.L., Kaneko, O. & Peterson, D.S. An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 17, 297–299 (2001).

    Article  CAS  Google Scholar 

  13. Camus, D. & Hadley, T. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 230, 553–556 (1985).

    Article  CAS  Google Scholar 

  14. Lobo, C.-A., Rodriguez, M., Reid, M. & Lustigman, S. Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood 101, 4628–4631 (2003).

    Article  CAS  Google Scholar 

  15. Carlton, J.M. et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757–763 (2008).

    Article  CAS  Google Scholar 

  16. Chakera, A., Seeber, R.M., John, A.E., Eidne, K.A. & Greaves, D.R. The Duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol. Pharmacol. 73, 1362–1370 (2008).

    Article  CAS  Google Scholar 

  17. Chitnis, C.E., Chaudhuri, A., Horuk, R., Pogo, A. & Miller, L. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med. 184, 1531–1536 (1996).

    Article  CAS  Google Scholar 

  18. Choe, H. et al. Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Mol. Microbiol. 55, 1413–1422 (2005).

    Article  CAS  Google Scholar 

  19. Cole-Tobian, J.L. et al. Age acquired immunity to a Plasmodium vivax invasion ligand, the Duffy binding protein. J. Infect. Dis. 186, 531–539 (2002).

    Article  CAS  Google Scholar 

  20. Xainli, J., Adams, J.H. & King, C.L. The erythrocyte binding motif of Plasmodium vivax duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol. Biochem. Parasitol. 111, 253–260 (2000).

    Article  CAS  Google Scholar 

  21. Xainli, J. et al. Age-dependent cellular immune responses to Plasmodium vivax Duffy binding protein in humans. J. Immunol. 169, 3200–3207 (2002).

    Article  CAS  Google Scholar 

  22. Chootong, P. et al. Mapping epitopes of the Plasmodium vivax Duffy binding protein with naturally acquired inhibitory antibodies. Infect. Immun. 78, 1089–1095 (2010).

    Article  CAS  Google Scholar 

  23. Gosi, P. et al. Polymorphism patterns in Duffy-binding protein among Thai Plasmodium vivax isolates. Malar. J. 7, 112 (2008).

    Article  Google Scholar 

  24. Singh, S.K., Hora, R., Belrhali, H., Chitnis, C.E. & Sharma, A. Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 439, 741–744 (2006).

    Article  CAS  Google Scholar 

  25. VanBuskirk, K.M., Sevova, E. & Adams, J.H. Conserved residues in the Plasmodium vivax Duffy-binding protein ligand domain are critical for erythrocyte receptor recognition. Proc. Natl. Acad. Sci. USA 101, 15754–15759 (2004).

    Article  CAS  Google Scholar 

  26. Hans, D. et al. Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion. Mol. Microbiol. 55, 1423–1434 (2005).

    Article  CAS  Google Scholar 

  27. Singh, S.K. et al. Definition of structural elements in Plasmodium vivax and P. knowlesi Duffy-binding domains necessary for erythrocyte invasion. Biochem. J. 374, 193–198 (2003).

    Article  CAS  Google Scholar 

  28. Steketee, R.W., Nahlen, B., Parise, M. & Menendez, C. The burden of malaria in pregnancy in malaria-endemic areas. Am. J. Trop. Med. Hyg. 64, 28–35 (2001).

    Article  CAS  Google Scholar 

  29. Salanti, A. et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49, 179–191 (2003).

    Article  CAS  Google Scholar 

  30. Srivastava, A. et al. Full-length extracellular region of the var2CSA variant of PfEMP1 is required for specific, high-affinity binding to CSA. Proc. Natl. Acad. Sci. USA 107, 4884–4889 (2010).

    Article  CAS  Google Scholar 

  31. Khunrae, P., Philip, J.M., Bull, D.R. & Higgins, M.K. Structural comparison of two CSPG-binding DBL domains from the VAR2CSA protein important in malaria during pregnancy. J. Mol. Biol. 393, 202–213 (2009).

    Article  CAS  Google Scholar 

  32. Tolia, N.H., Enemark, E.J., Sim, B.K.L. & Joshua-Tor, L Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 122, 183–193 (2005).

    Article  CAS  Google Scholar 

  33. McHenry, A.M. & Adams, J.H. The crystal structure of P. knowlesi DBPalpha DBL domain and its implications for immune evasion. Trends Biochem. Sci. 31, 487–491 (2006).

    Article  CAS  Google Scholar 

  34. Wilson, I.A. & Cox, N.J. Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 8, 737–771 (1990).

    Article  CAS  Google Scholar 

  35. Withers-Martinez, C. et al. Malarial EBA-175 region VI crystallographic structure reveals a KIX-like binding interface. J. Mol. Biol. 375, 773–781 (2008).

    Article  CAS  Google Scholar 

  36. Cérède, O., Dubremetz, J.F., Bout, D. & Lebrun, M. The Toxoplasma gondii protein MIC3 requires pro-peptide cleavage and dimerization to function as adhesin. EMBO J. 21, 2526–2536 (2002).

    Article  Google Scholar 

  37. Jewett, T.J. & Sibley, L.D. The toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival. J. Biol. Chem. 279, 9362–9369 (2004).

    Article  CAS  Google Scholar 

  38. Klemm, J.D., Schreiber, S.L. & Crabtree, G.R. Dimerization as a regulatory mechanism in signal transduction. Annu. Rev. Immunol. 16, 569–592 (1998).

    Article  CAS  Google Scholar 

  39. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    Article  CAS  Google Scholar 

  40. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010).

    Article  CAS  Google Scholar 

  41. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  42. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  43. CCP4. Collaborative Computational Project No. 4. (Acta Crystallogr. D50, 760, Daresbury, UK, 1994).

  44. Cohen, S.X. et al. Towards complete validated models in the next generation of ARP/wARP. Acta Crystallogr. D Biol. Crystallogr. 60, 2222–2229 (2004).

    Article  Google Scholar 

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  46. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  47. Hura, G.L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–612 (2009).

    Article  CAS  Google Scholar 

  48. Putnam, C.D., Hammel, M., Hura, G.L. & Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007).

    Article  CAS  Google Scholar 

  49. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  50. Franke, D. & Svergun, D.I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42, 342–346 (2009).

    Article  CAS  Google Scholar 

  51. Svergun, D., Barberato, C. & Koch, M.H.J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  52. Kozin, M.B. & Svergun, D.I. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Beverley, D. Fremont, L. Joshua-Tor, D. Goldberg, D. Sibley, J. Vogel and E. Chen for constructive comments on the manuscript, J. Adams (University of South Florida) for providing RII-PvDBP DNA and D. Goldberg (Washington University) for additional reagents. We thank T. Lohman and R. Galletto for assistance with the AUC experiments, D. Fremont and T. Brett for assistance with the ITC experiments, J. Nix and the Molecular Biology Consortium Collaborative Access Team at the Advanced Light Source for assistance in crystallographic data collection, and G. Hura, K. Dyer and the Structurally Integrated Biology for Life Sciences Team at the Advanced Light Source for assistance in SAXS data collection funded by US Department of Energy Integrated Diffraction Analysis Technologies grant contract number DE-AC02-05CH11231. The project described was supported by grant number 080792 from the US National Institute of Allergy and Infectious Disease to N.H.T., and by US National Institutes of Health Training Grant no. AI007172 and a W.M. Keck Postdoctoral Fellowship to J.D.B.

Author information

Authors and Affiliations

Authors

Contributions

J.D.B. performed functional assays, SAXS data analysis, AUC studies, ITC studies and structure analyses. J.A.Z. cloned, purified and crystallized RII-PvDBP. N.H.T. designed the study, analyzed SAXS data, collected, processed and refined X-ray data, and analyzed the structure. All authors were involved in writing the paper, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Niraj H Tolia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batchelor, J., Zahm, J. & Tolia, N. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nat Struct Mol Biol 18, 908–914 (2011). https://doi.org/10.1038/nsmb.2088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2088

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing