Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations

This article has been updated

Abstract

Oncogene activation has been shown to generate replication-born DNA damage, also known as replicative stress. The primary responder to replicative stress is not Ataxia-Telangiectasia Mutated (ATM) but rather the kinase ATM and Rad3-related (ATR). One limitation for the study of ATR is the lack of potent inhibitors. We here describe a cell-based screening strategy that has allowed us to identify compounds with ATR inhibitory activity in the nanomolar range. Pharmacological inhibition of ATR generates replicative stress, leading to chromosomal breakage in the presence of conditions that stall replication forks. Moreover, ATR inhibition is particularly toxic for p53-deficient cells, this toxicity being exacerbated by replicative stress–generating conditions such as the overexpression of cyclin E. Notably, one of the compounds we identified is NVP-BEZ235, a dual phosphatidylinositol-3-OH kinase (PI3K) and mTOR inhibitor that is being tested for cancer chemotherapy but that we now show is also very potent against ATM, ATR and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening strategy for the identification of ATR inhibitors.
Figure 2: Effect of ATRi and DDRi on the G2/M checkpoint.
Figure 3: ATM-, ATR- and DNA-PKcs-dependent phosphorylation in vivo.
Figure 4: ATRi and DDRi promote the breakage of stalled replication forks.
Figure 5: Inhibition of ATR generates replicative stress.
Figure 6: Synthetic lethality of ATR inhibition with cyclin E overexpression and/or p53 loss.

Similar content being viewed by others

Change history

  • 15 May 2011

    In the version of this article initially published online, the structures of the compounds in Figure 2c were incorrect. The error has been corrected for all versions of this article.

References

  1. Lempiäinen, H. & Halazonetis, T.D. Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J. 28, 3067–3073 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. López-Contreras, A.J. & Fernandez-Capetillo, O. The ATR barrier to replication-born DNA damage. DNA Repair (Amst.) 9, 1249–1255 (2010).

    Article  Google Scholar 

  3. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Gorgoulis, V.G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Halazonetis, T.D., Gorgoulis, V.G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Mallette, F.A., Gaumont-Leclerc, M.F. & Ferbeyre, G. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev. 21, 43–48 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cimprich, K.A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toledo, L.I., Murga, M., Gutierrez-Martinez, P., Soria, R. & Fernandez-Capetillo, O. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 22, 297–302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumagai, A., Lee, J., Yoo, H.Y. & Dunphy, W.G. TopBP1 activates the ATR-ATRIP complex. Cell 124, 943–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Link, W. et al. Chemical interrogation of FOXO3a nuclear translocation identifies potent and selective inhibitors of phosphoinositide 3-kinases. J. Biol. Chem. 284, 28392–28400 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cliby, W.A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bakkenist, C.J. & Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Cuadrado, M. et al. ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J. Exp. Med. 203, 297–303 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Matsuoka, S., Huang, M. & Elledge, S.J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, B.P. et al. Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J. Biol. Chem. 280, 14709–14715 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Maira, S.M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther. 7, 1851–1863 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. García-Echeverría, C. et al. In vivo antitumor activity of NVP-AEW541—a novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5, 231–239 (2004).

    Article  PubMed  Google Scholar 

  22. Petermann, E., Orta, M.L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murga, M. et al. A mouse model of ATR-Seckel shows embryonic DNA replicative stress and accelerated ageing. Nat. Genet. 8, 891–898 (2009).

    Article  Google Scholar 

  24. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Elson, A. et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl. Acad. Sci. USA 93, 13084–13089 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, Y. & Baltimore, D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10, 2401–2410 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Taccioli, G.E. et al. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9, 355–366 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, E.J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takai, H. et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice. Genes Dev. 14, 1439–1447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Syljuåsen, R.G. et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell. Biol. 25, 3553–3562 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beck, H. et al. Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J. Cell Biol. 188, 629–638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruzankina, Y. et al. Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat. Genet. 41, 1144–1149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koniaras, K., Cuddihy, A.R., Christopoulos, H., Hogg, A. & O'Connell, M.J. Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20, 7453–7463 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ekholm-Reed, S. et al. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J. Cell Biol. 165, 789–800 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spruck, C.H., Won, K.A. & Reed, S.I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Myers, K., Gagou, M.E., Zuazua-Villar, P., Rodriguez, R. & Meuth, M. ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet. 5, e1000324 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133, 864–877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Willmore, E. et al. A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103, 4659–4665 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Nishida, H. et al. Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res. 37, 5678–5689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Konstantinidou, G. et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations. Cancer Res. 69, 7644–7652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gilad, O. et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res. 70, 9693–9702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bartek, J., Bartkova, J. & Lukas, J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26, 7773–7779 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Bryant, H.E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Negrini, S., Gorgoulis, V.G. & Halazonetis, T.D. Genomic instability—an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Silva, J.M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Barbacid (Spanish National Cancer Research Centre) for providing reagents, M. Serrano for critical comments on the manuscript, and M.I. Albarran and P. Alfonso for help with the kinase assays. We also thank J.M. Silva (Irving Cancer Research Centre, Columbia University) for providing reagents. M.M. is supported by a grant from Fondo de Investigaciones Sanitarias (PI05945). Work in O.F.-C's laboratory is supported by grants from the Spanish Ministry of Science (CSD2007-00017 and SAF2008-01596), a Pfizer Foundation Award, the European Molecular Biology Organization Young Investigator Programme and the European Research Council (ERC-210520).

Author information

Authors and Affiliations

Authors

Contributions

O.F.-C. designed the study and experiments and wrote the paper. L.I.T. conducted most of the experiments presented. M.M. helped in the work with oncogenes and CDC25A. R.Z. and R.S. provided technical help. J.O., A.R., S.M., J.P. and J.R.B. provided the chemicals and helped in the development of the small molecule screening.

Corresponding author

Correspondence to Oscar Fernandez-Capetillo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Methods (PDF 2262 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, L., Murga, M., Zur, R. et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18, 721–727 (2011). https://doi.org/10.1038/nsmb.2076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing