Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism and function of synaptotagmin-mediated membrane apposition

Abstract

Synaptotagmin-1 is a Ca2+ sensor that triggers synchronous neurotransmitter release. The first documented biochemical property of synaptotagmin-1 was its ability to aggregate membranes in response to Ca2+. However, the mechanism and function of this process were poorly understood. Here we show that synaptotagmin-1–mediated vesicle aggregation is driven by trans interactions between synaptotagmin-1 molecules bound to different membranes. We found a strong correlation between the ability of Ca2+-bound synaptotagmin-1 to aggregate vesicles and to stimulate SNARE-mediated membrane fusion. Moreover, artificial aggregation of membranes—using non-synaptotagmin proteins—also efficiently promoted fusion of SNARE-bearing liposomes. Finally, using a modified fusion assay, we observed that synaptotagmin-1 drove the assembly of otherwise non-fusogenic individual t-SNARE proteins into fusion-competent heterodimers, independently of aggregation. Thus, membrane aggregation and t-SNARE assembly appear to be two key aspects of fusion reactions that are regulated by Ca2+-bound synaptotagmin-1 and catalyzed by SNAREs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cytoplasmic domain of synaptotagmin-1 aggregates phosphatidylserine-harboring vesicles in a Ca2+-dependent manner.
Figure 2: C2AB aggregates liposomes through a mechanism distinct from those of avidin-biotin and poly-D-lysine.
Figure 3: Mutational analysis of synaptotagmin-1–mediated membrane aggregation.
Figure 4: Mapping the membrane-binding interface of C2B using NBD fluorescence reporters.
Figure 5: FRET between NBD-labeled C2AB and rhodamine-labeled liposomes.
Figure 6: Synaptotagmin-1–mediated vesicle aggregation occurs through trans interactions.
Figure 7: The ability of synaptotagmin-1 to aggregate vesicles is correlated with its ability to stimulate fusion of v-SNARE vesicles with t-SNARE heterodimer vesicles.
Figure 8: Stimulation of SNARE-catalyzed fusion by other vesicle-aggregating proteins.
Figure 9: Ca2+-C2AB, but not other aggregating agents, accelerates fusion between syntaxin-bearing vesicles (SYXr) and Vr in the presence of soluble SNAP-25.

Similar content being viewed by others

References

  1. Koh, T.W. & Bellen, H.J. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci. 26, 413–422 (2003).

    Article  CAS  Google Scholar 

  2. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  Google Scholar 

  3. Chicka, M.C., Hui, E., Liu, H. & Chapman, E.R. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nat. Struct. Mol. Biol. 15, 827–835 (2008).

    Article  CAS  Google Scholar 

  4. Popoli, M. & Mengano, A. A hemagglutinin specific for sialic acids in a rat brain synaptic vesicle-enriched fraction. Neurochem. Res. 13, 63–67 (1988).

    Article  CAS  Google Scholar 

  5. Popoli, M., Paterno, R. & Campanella, G. Identification and partial purification of a GM1-binding protein from presynaptic vesicles. Acta Neurol. (Napoli) 13, 213–219 (1991).

    CAS  Google Scholar 

  6. Damer, C.K. & Creutz, C.E. Synergistic membrane interactions of the two C2 domains of synaptotagmin. J. Biol. Chem. 269, 31115–31123 (1994).

    CAS  PubMed  Google Scholar 

  7. Damer, C.K. & Creutz, C.E. Calcium-dependent self-association of synaptotagmin I. J. Neurochem. 67, 1661–1668 (1996).

    Article  CAS  Google Scholar 

  8. Araç, D. et al. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13, 209–217 (2006).

    Article  Google Scholar 

  9. Connell, E. et al. Cross-linking of phospholipid membranes is a conserved property of calcium-sensitive synaptotagmins. J. Mol. Biol. 380, 42–50 (2008).

    Article  CAS  Google Scholar 

  10. Bhalla, A., Chicka, M.C., Tucker, W.C. & Chapman, E.R. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13, 323–330 (2006).

    Article  CAS  Google Scholar 

  11. Gaffaney, J.D., Dunning, F.M., Wang, Z., Hui, E. & Chapman, E.R. Synaptotagmin C2B domain regulates Ca2+-triggered fusion in vitro: critical residues revealed by scanning alanine mutagenesis. J. Biol. Chem. 283, 31763–31775 (2008).

    Article  CAS  Google Scholar 

  12. Diao, J., Yoon, T.Y., Su, Z., Shin, Y.K. & Ha, T. C2AB: a molecular glue for lipid vesicles with a negatively charged surface. Langmuir 25, 7177–7180 (2009).

    Article  CAS  Google Scholar 

  13. Garcia, R.A., Forde, C.E. & Godwin, H.A. Calcium triggers an intramolecular association of the C2 domains in synaptotagmin. Proc. Natl. Acad. Sci. USA 97, 5883–5888 (2000).

    Article  CAS  Google Scholar 

  14. Ubach, J. et al. The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry 40, 5854–5860 (2001).

    Article  CAS  Google Scholar 

  15. Wu, Y. et al. Visualization of synaptotagmin I oligomers assembled onto lipid monolayers. Proc. Natl. Acad. Sci. USA 100, 2082–2087 (2003).

    Article  CAS  Google Scholar 

  16. Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273, 13995–14001 (1998).

    Article  CAS  Google Scholar 

  17. Bai, J., Tucker, W.C. & Chapman, E.R. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11, 36–44 (2004).

    Article  CAS  Google Scholar 

  18. Bhalla, A., Tucker, W.C. & Chapman, E.R. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol. Biol. Cell 16, 4755–4764 (2005).

    Article  CAS  Google Scholar 

  19. Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007).

    Article  CAS  Google Scholar 

  20. Hui, E., Johnson, C.P., Yao, J., Dunning, F.M. & Chapman, E.R. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 138, 709–721 (2009).

    Article  CAS  Google Scholar 

  21. Xue, M., Ma, C., Craig, T.K., Rosenmund, C. & Rizo, J. The Janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function. Nat. Struct. Mol. Biol. 15, 1160–1168 (2008).

    Article  CAS  Google Scholar 

  22. Ohki, S., Duzgunes, N. & Leonards, K. Phospholipid vesicle aggregation: effect of monovalent and divalent ions. Biochemistry 21, 2127–2133 (1982).

    Article  CAS  Google Scholar 

  23. Green, N.M. Avidin. 1. The use of (14-C)biotin for kinetic studies and for assay. Biochem. J. 89, 585–591 (1963).

    Article  CAS  Google Scholar 

  24. Rufener, E., Frazier, A.A., Wieser, C.M., Hinderliter, A. & Cafiso, D.S. Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling. Biochemistry 44, 18–28 (2005).

    Article  CAS  Google Scholar 

  25. Hui, E., Bai, J. & Chapman, E.R. Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys. J. 91, 1767–1777 (2006).

    Article  CAS  Google Scholar 

  26. Connor, J. & Schroit, A.J. Determination of lipid asymmetry in human red cells by resonance energy transfer. Biochemistry 26, 5099–5105 (1987).

    Article  CAS  Google Scholar 

  27. Bai, J., Wang, P. & Chapman, E.R. C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc. Natl. Acad. Sci. USA 99, 1665–1670 (2002).

    Article  CAS  Google Scholar 

  28. Shahin, V. et al. Synaptotagmin perturbs the structure of phospholipid bilayers. Biochemistry 47, 2143–2152 (2008).

    Article  CAS  Google Scholar 

  29. Wang, P., Wang, C.T., Bai, J., Jackson, M.B. & Chapman, E.R. Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a nonadditive manner. J. Biol. Chem. 278, 47030–47037 (2003).

    Article  CAS  Google Scholar 

  30. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  31. Leslie, C.C. Properties and regulation of cytosolic phospholipase A2. J. Biol. Chem. 272, 16709–16712 (1997).

    Article  CAS  Google Scholar 

  32. Bai, J., Wang, C.T., Richards, D.A., Jackson, M.B. & Chapman, E.R. Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41, 929–942 (2004).

    Article  CAS  Google Scholar 

  33. Lynch, K.L. et al. Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol. Biol. Cell 19, 5093–5103 (2008).

    Article  CAS  Google Scholar 

  34. Chapman, E.R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008).

    Article  CAS  Google Scholar 

  35. Zhang, X., Kim-Miller, M.J., Fukuda, M., Kowalchyk, J.A. & Martin, T.F. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34, 599–611 (2002).

    Article  CAS  Google Scholar 

  36. Stein, A., Radhakrishnan, A., Riedel, D., Fasshauer, D. & Jahn, R. Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol. 14, 904–911 (2007).

    Article  CAS  Google Scholar 

  37. Lynch, K.L. et al. Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis. Mol. Biol. Cell 18, 4957–4968 (2007).

    Article  CAS  Google Scholar 

  38. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  Google Scholar 

  39. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  40. Chapman, E.R., Hanson, P.I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23671 (1995).

    Article  CAS  Google Scholar 

  41. Schiavo, G., Stenbeck, G., Rothman, J.E. & Sollner, T.H. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc. Natl. Acad. Sci. USA 94, 997–1001 (1997).

    Article  CAS  Google Scholar 

  42. Kaetzel, M.A. et al. Phosphorylation mutants elucidate the mechanism of annexin IV-mediated membrane aggregation. Biochemistry 40, 4192–4199 (2001).

    Article  CAS  Google Scholar 

  43. Fernández-Alfonso, T., Kwan, R. & Ryan, T.A. Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 51, 179–186 (2006).

    Article  Google Scholar 

  44. Earles, C.A., Bai, J., Wang, P. & Chapman, E.R. The tandem C2 domains of synaptotagmin contain redundant Ca2+ binding sites that cooperate to engage t-SNAREs and trigger exocytosis. J. Cell Biol. 154, 1117–1123 (2001).

    Article  CAS  Google Scholar 

  45. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  Google Scholar 

  46. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32, 1057–1069 (2001).

    Article  CAS  Google Scholar 

  47. Hui, E., Johnson, C.P., Yao, J., Dunning, F.M. & Chapman, E.R. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 138, 709–721 (2009).

    Article  CAS  Google Scholar 

  48. Bai, J., Tucker, W.C. & Chapman, E.R. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11, 36–44 (2004).

    Article  CAS  Google Scholar 

  49. Ubach, J. et al. The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry 40, 5854–5860 (2001).

    Article  CAS  Google Scholar 

  50. Wu, Y. et al. Visualization of synaptotagmin I oligomers assembled onto lipid monolayers. Proc. Natl. Acad. Sci. USA 100, 2082–2087 (2003).

    Article  CAS  Google Scholar 

  51. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  52. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  Google Scholar 

  53. Bhalla, A., Chicka, M.C., Tucker, W.C. & Chapman, E.R. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13, 323–330 (2006).

    Article  CAS  Google Scholar 

  54. Gaffaney, J.D., Dunning, F.M., Wang, Z., Hui, E. & Chapman, E.R. Synaptotagmin C2B domain regulates Ca2+-triggered fusion in vitro: critical residues revealed by scanning alanine mutagenesis. J. Biol. Chem. 283, 31763–31775 (2008).

    Article  CAS  Google Scholar 

  55. Ohki, S., Duzgunes, N. & Leonards, K. Phospholipid vesicle aggregation: effect of monovalent and divalent ions. Biochemistry 21, 2127–2133 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Chapman laboratory for their discussions and comments. This work was supported by the Howard Hughes Medical Institute (E.R.C.), the US National Institutes of Health (NIH) National Institute of Mental Health grant MH061876 (to E.R.C.), and the NIH National Institutes on Deafness and Other Communication Disorders grant 1K99DC011267-01 (to C.P.J.).

Author information

Authors and Affiliations

Authors

Contributions

E.R.C. conceived of and supervised the project; E.H., J.D.G. and E.R.C. designed the experiments and wrote the manuscript; E.H. conducted all the aggregation assays on synaptotagmin-1 proteins and cPLA2-C2, membrane penetration assays and FRET-based membrane binding assays; J.D.G. conducted all the fusion assays on synaptotagmin-1 proteins and cPLA2-C2 and performed experiments for Figure 6 with Z.W.; Z.W. carried out experiments for Figure 9; C.P.J. conducted avidin-biotin–mediated aggregation and fusion assays in Figure 2d,i and Figure 8e–h; C.S.E. carried out experiments in Supplementary Figure 8.

Corresponding author

Correspondence to Edwin R Chapman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 1725 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, E., Gaffaney, J., Wang, Z. et al. Mechanism and function of synaptotagmin-mediated membrane apposition. Nat Struct Mol Biol 18, 813–821 (2011). https://doi.org/10.1038/nsmb.2075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing