Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray structure of a functional full-length dynein motor domain

Abstract

Dyneins are large microtubule-based motors that power a wide variety of cellular processes. Here we report a 4.5-Å X-ray crystallographic analysis of the entire functional motor domain of cytoplasmic dynein with ADP from Dictyostelium discoideum, which has revealed the detailed architecture of the functional units required for motor activity, including the ATP-hydrolyzing ring, the long coiled-coil microtubule-binding stalk and the force-generating rod-like linker. We discovered a Y-shaped protrusion composed of two long coiled coils—the stalk and the newly identified 'strut'. This structure supports our model in which the strut coiled coil actively contributes to communication between the primary ATPase site in the ring and the microtubule-binding site at the tip of the stalk coiled coil. Our work also provides insight into how the two motor domains are arranged and how they interact with each other in a functional dimer form of cytoplasmic dynein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron densities of the dynein motor domain and their interpretation.
Figure 2: Structure of the dynein motor domain.
Figure 3: Crystallographic dimer of the dynein motor domain.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Gibbons, I.R. & Rowe, A.J. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149, 424–426 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Paschal, B.M. & Vallee, R.B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Karki, S. & Holzbaur, E.L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. DiBella, L.M. & King, S.M. Dynein motors of the Chlamydomonas flagellum. Int. Rev. Cytol. 210, 227–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Vallee, R.B., Williams, J.C., Varma, D. & Barnhart, L.E. Dynein: an ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Sakato, M. & King, S.M. Design and regulation of the AAA+ microtubule motor dynein. J. Struct. Biol. 146, 58–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Pfister, K.K. et al. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet. 2, e1 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  10. Koonce, M.P. & Samso, M. Overexpression of cytoplasmic dynein's globular head causes a collapse of the interphase microtubule network in Dictyostelium. Mol. Biol. Cell 7, 935–948 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishiura, M. et al. A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules. J. Biol. Chem. 279, 22799–22802 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Gee, M.A., Heuser, J.E. & Vallee, R.B. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Reck-Peterson, S.L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter, A.P., Cho, C., Jin, L. & Vale, R.D. Crystal structure of the dynein motor domain. Science 331, 1159–1165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roberts, A.J. et al. AAA+ ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mocz, G. & Gibbons, I.R. Model for the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases. Structure 9, 93–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Erzberger, J.P. & Berger, J.M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Burgess, S.A. & Knight, P.J. Is the dynein motor a winch? Curr. Opin. Struct. Biol. 14, 138–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Shima, T., Kon, T., Imamula, K., Ohkura, R. & Sutoh, K. Two modes of microtubule sliding driven by cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 103, 17736–17740 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol. 12, 513–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Asai, D.J. & Koonce, M.P. The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol. 11, 196–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Toba, S., Watanabe, T.M., Yamaguchi-Okimoto, L., Toyoshima, Y.Y. & Higuchi, H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 103, 5741–5745 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gennerich, A., Carter, A.P., Reck-Peterson, S.L. & Vale, R.D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amos, L.A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28 (1989).

    CAS  PubMed  Google Scholar 

  27. Gibbons, I.R. et al. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 280, 23960–23965 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Carter, A.P. et al. Structure and functional role of dynein's microtubule-binding domain. Science 322, 1691–1695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kon, T. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat. Struct. Mol. Biol. 16, 325–333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vale, R.D. AAA proteins. Lords of the ring. J. Cell Biol. 150, F13–F19 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Samsó, M. & Koonce, M.P. 25 Angstrom resolution structure of a cytoplasmic dynein motor reveals a seven-member planar ring. J. Mol. Biol. 340, 1059–1072 (2004).

    Article  PubMed  Google Scholar 

  32. Höök, P. et al. Long range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. J. Biol. Chem. 280, 33045–33054 (2005).

    Article  PubMed  Google Scholar 

  33. Numata, N. et al. Molecular mechanism of force generation by dynein, a molecular motor belonging to the AAA+ family. Biochem. Soc. Trans. 36, 131–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y.Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 104, 16134–16139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho, C., Reck-Peterson, S.L. & Vale, R.D. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J. Biol. Chem. 283, 25839–25845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kon, T., Shima, T. & Sutoh, K. Protein engineering approaches to study the dynein mechanism using a Dictyostelium expression system. Methods Cell Biol. 92, 65–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  40. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F-1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Cowtan, K. dm: an automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  43. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  45. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  46. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Merritt, E.A. & Murphy, M.E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Yamashita, Y. Umena, M. Suzuki and A. Nakagawa of the SPring-8 BL-44XU beamline, and Y. Yamada, N. Matsugaki, N. Igarashi and S. Wakatsuki of the Photon Factory, High Energy Accelerator Research Organization (KEK), for their support during X-ray data collection. We also thank R. Ohkura (University of Tokyo) and R. Shimo-Kon and T. Kikuchi (Osaka University) for their technical support. This work was supported by Grants-in-Aid for Scientific Research (17770126, 20687011 and 23370073 to T.K.; 16083205 and 17107003 to K.S.; 17053006, 18054008 and 20051006 to G.K.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by a grant from the Human Frontier Science Program (T.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.K., K.S. and G.K. conceived of and designed the study. T.K. expressed, purified and crystallized the protein. T.K. and G.K. collected and analyzed the X-ray diffraction data. T.K., K.S. and G.K. wrote the paper.

Corresponding authors

Correspondence to Kazuo Sutoh or Genji Kurisu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon, T., Sutoh, K. & Kurisu, G. X-ray structure of a functional full-length dynein motor domain. Nat Struct Mol Biol 18, 638–642 (2011). https://doi.org/10.1038/nsmb.2074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing