Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective removal of promoter nucleosomes by the RSC chromatin-remodeling complex

Abstract

Purified chromatin rings, excised from the PHO5 locus of Saccharomyces cerevisiae in transcriptionally repressed and activated states, were remodeled with RSC and ATP. Nucleosomes were translocated, and those originating on the promoter of repressed rings were removed, whereas those originating on the open reading frame (ORF) were retained. Treatment of the repressed rings with histone deacetylase diminished the removal of promoter nucleosomes. These findings point to a principle of promoter chromatin remodeling for transcription, namely that promoter specificity resides primarily in the nucleosomes rather than in the remodeling complex that acts upon them.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of RSC and ATP on the accessibility of gene rings to digestion by BstEII and ClaI.
Figure 2: Effect of RSC and ATP on the accessibility of PHO5 rings to restriction endonuclease digestion.
Figure 3: Effect of RSC and ATP on topoisomer distributions of PHO5 rings.
Figure 4: Nucleosome loss determined by limit nuclease digestion.

Similar content being viewed by others

References

  1. Lorch, Y., LaPointe, J.W. & Kornberg, R.D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    Article  CAS  Google Scholar 

  2. Knezetic, J.A. & Luse, D.S. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45, 95–104 (1986).

    Article  CAS  Google Scholar 

  3. Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145 (1988).

    Article  CAS  Google Scholar 

  4. Elgin, S.C. The formation and function of DNase I hypersensitive sites in the process of gene activation. J. Biol. Chem. 263, 19259–19262 (1988).

    CAS  PubMed  Google Scholar 

  5. McGhee, J.D., Wood, W.I., Dolan, M., Engel, J.D. & Felsenfeld, G. A 200 base pair region at the 5′ end of the chicken adult beta-globin gene is accessible to nuclease digestion. Cell 27, 45–55 (1981).

    Article  CAS  Google Scholar 

  6. Paranjape, S.M., Kamakaka, R.T. & Kadonaga, J.T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63, 265–297 (1994).

    Article  CAS  Google Scholar 

  7. Almer, A., Rudolph, H., Hinnen, A. & Horz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696 (1986).

    Article  CAS  Google Scholar 

  8. Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003).

    Article  CAS  Google Scholar 

  9. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).

    Article  CAS  Google Scholar 

  10. Boeger, H., Griesenbeck, J. & Kornberg, R.D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133, 716–726 (2008).

    Article  CAS  Google Scholar 

  11. Bernstein, B.E., Liu, C.L., Humphrey, E.L., Perlstein, E.O. & Schreiber, S.L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).

    Article  Google Scholar 

  12. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. & Lieb, J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36, 900–905 (2004).

    Article  CAS  Google Scholar 

  13. Cairns, B.R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).

    Article  CAS  Google Scholar 

  14. Sudarsanam, P. & Winston, F. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet. 16, 345–351 (2000).

    Article  CAS  Google Scholar 

  15. Cairns, B.R., Kim, Y.J., Sayre, M.H., Laurent, B.C. & Kornberg, R.D. A multi-subunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91, 1950–1954 (1994).

    Article  CAS  Google Scholar 

  16. Peterson, C.L., Dingwall, A. & Scott, M.P. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc. Natl. Acad. Sci. USA 91, 2905–2908 (1994).

    Article  CAS  Google Scholar 

  17. Côté, J., Quinn, J., Workman, J.L. & Peterson, C.L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).

    Article  Google Scholar 

  18. Kwon, H., Imbalzano, A.N., Khavari, P.A., Kingston, R.E. & Green, M.R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

    Article  CAS  Google Scholar 

  19. Lorch, Y., Cairns, B.R., Zhang, M. & Kornberg, R.D. Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 94, 29–34 (1998).

    Article  CAS  Google Scholar 

  20. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12, 747–755 (2005).

    Article  CAS  Google Scholar 

  21. Zofall, M., Persinger, J., Kassabov, S.R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339–346 (2006).

    Article  CAS  Google Scholar 

  22. Chaban, Y. et al. Structure of a RSC-nucleosome complex and insights into chromatin remodeling. Nat. Struct. Mol. Biol. 15, 1272–1277 (2008).

    Article  CAS  Google Scholar 

  23. Lorch, Y., Maier-Davis, B. & Kornberg, R.D. Mechanism of chromatin remodeling. Proc. Natl. Acad. Sci. USA 107, 3458–3462 (2010).

    Article  CAS  Google Scholar 

  24. Griesenbeck, J., Boeger, H., Strattan, J.S. & Kornberg, R.D. Affinity purification of specific chromatin segments from chromosomal loci in yeast. Mol. Cell. Biol. 23, 9275–9282 (2003).

    Article  CAS  Google Scholar 

  25. Svaren, J. & Horz, W. Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci. 22, 93–97 (1997).

    Article  CAS  Google Scholar 

  26. Lorch, Y., Maier-Davis, B. & Kornberg, R.D. Chromatin remodeling by nucleosome disassembly in vitro. Proc. Natl. Acad. Sci. USA 103, 3090–3093 (2006).

    Article  CAS  Google Scholar 

  27. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14, 667–673 (2004).

    Article  CAS  Google Scholar 

  28. Clapier, C.R. & Cairns, B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  Google Scholar 

  29. Floer, M. et al. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141, 407–418 (2010).

    Article  CAS  Google Scholar 

  30. Badis, G. et al. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32, 878–887 (2008).

    Article  CAS  Google Scholar 

  31. Barbaric, S. et al. Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo. J. Biol. Chem. 282, 27610–27621 (2007).

    Article  CAS  Google Scholar 

  32. Zhang, H., Roberts, D.N. & Cairns, B.R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  Google Scholar 

  33. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  Google Scholar 

  34. Cairns, B.R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14, 989–996 (2007).

    Article  CAS  Google Scholar 

  35. Moreira, J.M. & Holmberg, S. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. EMBO J. 18, 2836–2844 (1999).

    Article  CAS  Google Scholar 

  36. Depew, D.E. & Wang, J.C. Conformational fluctuations of DNA helix. Proc. Natl. Acad. Sci. USA 72, 4275–4279 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by US National Institutes of Health grant GM36659 (R.D.K).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. designed, conducted and interpreted experiments and wrote the paper. J.G. and H.B. participated in the isolation of chromatin rings and in limit nuclease digestion experiments. B.M.-D. isolated chromatin rings and RSC. R.D.K. designed and interpreted experiments and wrote the paper.

Corresponding author

Correspondence to Yahli Lorch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2553 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorch, Y., Griesenbeck, J., Boeger, H. et al. Selective removal of promoter nucleosomes by the RSC chromatin-remodeling complex. Nat Struct Mol Biol 18, 881–885 (2011). https://doi.org/10.1038/nsmb.2072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing