Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimeric assembly and biochemical characterization of the Trax–translin endonuclease complex

Abstract

Trax–translin heteromers, also known as C3PO, have been proposed to activate the RNA-induced silencing complex (RISC) by facilitating endonucleolytic cleavage of the siRNA passenger strand. We report on the crystal structure of hexameric Drosophila C3PO formed by truncated translin and Trax, along with electron microscopic and mass spectrometric studies on octameric C3PO formed by full-length translin and Trax. Our studies establish that Trax adopts the translin fold, possesses catalytic centers essential for C3PO's endoRNase activity and interacts extensively with translin to form an octameric assembly. The catalytic pockets of Trax subunits are located within the interior chamber of the octameric scaffold. Truncated C3PO, like full-length C3PO, shows endoRNase activity that leaves 3′-hydroxyl–cleaved ends. We have measured the catalytic activity of C3PO and shown it to cleave almost stoichiometric amounts of substrate per second.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of truncated hexameric C3PO, Trax-translin interactions and an active center in Trax for endoRNase activity.
Figure 2: Mass spectra and simulated spectrum of the full-length C3PO.
Figure 3: Classification and averaging of negatively stained particle images and fit of octameric C3PO into 3D EM map.
Figure 4: Models of full-length octameric C3PO (6:2 and 5:3 translin:Trax) based on the crystal structure of truncated hexameric C3PO (4:2 translin:Trax).
Figure 5: C3PO RNase activity generates products with 2′- and 3′-hydroxyl termini and requires Glu123 and Glu126 residues in Trax.
Figure 6: C3PO endoribonucleolytic activity is length-dependent.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P.D. A protein sensor for siRNA asymmetry. Science 306, 1377–1380 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawamata, T. & Tomari, Y. Making RISC. Trends Biochem. Sci. 35, 368–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, Y. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325, 750–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaendling, A. & McFarlane, R.J. Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem. J. 429, 225–234 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Li, Z., Wu, Y. & Baraban, J.M. The Translin/Trax RNA binding complex: clues to function in the nervous system. Biochim. Biophys. Acta 1779, 479–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eliahoo, E. et al. Mapping of interaction sites of the Schizosaccharomyces pombe protein Translin with nucleic acids and proteins: a combined molecular genetics and bioinformatics study. Nucleic Acids Res. 38, 2975–2989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lluis, M., Hoe, W., Schleit, J. & Robertus, J. Analysis of nucleic acid binding by a recombinant translin–trax complex. Biochem. Biophys. Res. Commun. 396, 709–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta, G.D., Makde, R.D., Rao, B.J. & Kumar, V. Crystal structures of Drosophila mutant translin and characterization of translin variants reveal the structural plasticity of translin proteins. FEBS J. 275, 4235–4249 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Pascal, J.M., Hart, P.J., Hecht, N.B. & Robertus, J.D. Crystal structure of TB-RBP, a novel RNA-binding and regulating protein. J. Mol. Biol. 319, 1049–1057 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Sugiura, I. et al. Structure of human translin at 2.2 A resolution. Acta Crystallogr. D Biol. Crystallogr. 60, 674–679 (2004).

    Article  PubMed  Google Scholar 

  16. VanLoock, M.S., Yu, X., Kasai, M. & Egelman, E.H. Electron microscopic studies of the translin octameric ring. J. Struct. Biol. 135, 58–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Claussen, M., Koch, R., Jin, Z.Y. & Suter, B. Functional characterization of Drosophila Translin and Trax. Genetics 174, 1337–1347 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, W. An equivalent metal ion in one- and two-metal-ion catalysis. Nat. Struct. Mol. Biol. 15, 1228–1231 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aharoni, A., Baran, N. & Manor, H. Characterization of a multisubunit human protein which selectively binds single stranded d(GA)n and d(GT)n sequence repeats in DNA. Nucleic Acids Res. 21, 5221–5228 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aoki, K., Suzuki, K., Ishida, R. & Kasai, M. The DNA binding activity of Translin is mediated by a basic region in the ring-shaped structure conserved in evolution. FEBS Lett. 443, 363–366 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Aoki, K. et al. A novel gene, Translin, encodes a recombination hotspot binding protein associated with chromosomal translocations. Nat. Genet. 10, 167–174 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Gupta, G.D. et al. Co-expressed recombinant human Translin-Trax complex binds DNA. FEBS Lett. 579, 3141–3146 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Kasai, M. et al. The translin ring specifically recognizes DNA ends at recombination hot spots in the human genome. J. Biol. Chem. 272, 11402–11407 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Laufman, O., Ben Yosef, R., Adir, N. & Manor, H. Cloning and characterization of the Schizosaccharomyces pombe homologs of the human protein Translin and the Translin-associated protein TRAX. Nucleic Acids Res. 33, 4128–4139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sengupta, K. & Rao, B.J. Translin binding to DNA: recruitment through DNA ends and consequent conformational transitions. Biochemistry 41, 15315–15326 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J., Boja, E.S., Oubrahim, H. & Chock, P.B. Testis brain ribonucleic acid-binding protein/translin possesses both single-stranded and double-stranded ribonuclease activities. Biochemistry 43, 13424–13431 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, X.Q., Gu, W., Meng, X. & Hecht, N.B. The RNA-binding protein, TB-RBP, is the mouse homologue of translin, a recombination protein associated with chromosomal translocations. Proc. Natl. Acad. Sci. USA 94, 5640–5645 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, X.Q., Xu, L. & Hecht, N.B. Dimerization of the testis brain RNA-binding protein (translin) is mediated through its C-terminus and is required for DNA- and RNA-binding. Nucleic Acids Res. 26, 1675–1680 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sobott, F., Hernandez, H., McCammon, M.G., Tito, M.A. & Robinson, C.V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Alefelder, S., Patel, B.K. & Eckstein, F. Incorporation of terminal phosphorothioates into oligonucleotides. Nucleic Acids Res. 26, 4983–4988 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Akbergenov, R. et al. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res. 34, 462–471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Li from the Sloan-Kettering Institute for assistance with synchrotron data collection, H. Wu from Weill Cornell Medical College for access to and assistance with MALS experiments, and P. Upla from the New York Structural Biology Center for help with the electron microscopy of labeled proteins. We are grateful to the staff of the X-29 beamline at the National Synchrotron Light Source, Brookhaven National Laboratory, and the staff of the ID-24-E beamline at the Advanced Photon Source, Argonne National Laboratory, for their help with data collection. D.J.P. is supported by US National Institutes of Health (NIH) grant AI068776. T.T. is supported by funds from the Howard Hughes Medical Institute and the NIH. D.J.P. and T.T. were jointly supported by the Starr Cancer Consortium. A.Y.P. and C.V.R. acknowledge funding from the Biotechnology and Biological Sciences Research Council and the Royal Society.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. designed and conducted the experiments leading to crystallization of C3PO and undertook initial structural characterization, and D.K.S. improved the density map, built the model and finished the refinement under the supervision of D.J.P.; M.A. and S.A.J. did the cleavage assays under the supervision of T.T.; R.D.-A. and W.J.R. conducted the EM studies; A.Y.P. conducted the MS studies under the supervision of C.V.R.; Q.Y. and Y.T. conducted the MALS studies. All authors participated in writing the paper.

Corresponding authors

Correspondence to Thomas Tuschl or Dinshaw J Patel.

Ethics declarations

Competing interests

TT is a cofounder and scientific advisor to Alnylam Pharmaceuticals and an advisor to Regulus Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 2249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Simanshu, D., Ascano, M. et al. Multimeric assembly and biochemical characterization of the Trax–translin endonuclease complex. Nat Struct Mol Biol 18, 658–664 (2011). https://doi.org/10.1038/nsmb.2069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing