Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Constructing and decoding unconventional ubiquitin chains

Abstract

One of the most notable discoveries in the ubiquitin system during the past decade is the extensive use of diverse chain linkages to control signaling networks. Although the utility of Lys48- and Lys63-linked chains in protein turnover and molecular assembly, respectively, are well known, we are only beginning to understand how unconventional chain linkages are formed on target proteins and how such linkages are decoded by specific binding proteins. In this review, we summarize recent efforts to elucidate the machinery and mechanisms controlling assembly of Lys11-linked and linear (or Met1-linked) ubiquitin chains, and describe current models for how these chain types function in immune signaling and cell-cycle control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of polyubiquitin chains and linkage-specific assembly.
Figure 2: Linear chain formation and mechanism of RBR E3s.
Figure 3: Chain linkage specificity in cellular signaling.

Similar content being viewed by others

References

  1. Pickart, C.M. Back to the future with ubiquitin. Cell 116, 181–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Schulman, B.A. & Harper, J.W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755–764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    Article  PubMed  Google Scholar 

  5. Komander, D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937–953 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda, F., Crosetto, N. & Dikic, I. What determines the specificity and outcomes of ubiquitin signaling? Cell 143, 677–681 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Harper, J.W. & Schulman, B.A. Structural complexity in ubiquitin recognition. Cell 124, 1133–1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verma, R., Oania, R., Graumann, J. & Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kirkin, V. & Dikic, I. Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr. Opin. Cell Biol. 19, 199–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Sun, L. & Chen, Z.J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16, 119–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dammer, E.B. et al. Polyubiquitin linkage profiles in three models of proteolytic stress suggest etiology of Alzheimer disease. J. Biol. Chem. 286, 10457–10465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bennett, E.J., Bence, N.F., Jayakumar, R. & Kopito, R.R. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Deshaies, R.J. & Joazeiro, C.A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    CAS  PubMed  Google Scholar 

  18. Wenzel, D.M., Stoll, K.E. & Klevit, R.E. E2s: structurally economical and functionally replete. Biochem. J. 433, 31–42 (2010).

    Article  Google Scholar 

  19. Petroski, M.D. & Deshaies, R.J. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123, 1107–1120 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Eddins, M.J., Carlile, C.M., Gomez, K.M., Pickart, C.M. & Wolberger, C. Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13, 915–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. VanDemark, A.P., Hofmann, R.M., Tsui, C., Pickart, C.M. & Wolberger, C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kirkpatrick, D.S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, H.T. et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282, 17375–17386 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baboshina, O.V. & Haas, A.L. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J. Biol. Chem. 271, 2823–2831 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rape, M. & Kirschner, M.W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Williamson, A. et al. Identification of a physiological E2 module for the human anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 106, 18213–18218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wickliffe, K.E., Lorenz, S., Wemmer, D.E., Kuriyan, J. & Rape, M. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit e2. Cell 144, 769–781 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature 435, 687–692 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsumoto, M.L. et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol. Cell 39, 477–484 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Rodrigo-Brenni, M.C. & Morgan, D.O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, Y., Kim, A.H. & Bonni, A. The dynamic ubiquitin ligase duo: Cdh1-APC and Cdc20-APC regulate neuronal morphogenesis and connectivity. Curr. Opin. Neurobiol. 20, 92–99 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dynek, J.N. et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198–4209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Bremm, A., Freund, S.M. & Komander, D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat. Struct. Mol. Biol. 17, 939–947 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7, 742–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Enesa, K. et al. NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem. 283, 7036–7045 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iwai, K. & Tokunaga, F. Linear polyubiquitination: a new regulator of NF-κB activation. EMBO Rep. 10, 706–713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bianchi, K. & Meier, P. A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol. Cell 36, 736–742 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Haas, T.L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Tokunaga, F. et al. Sharpin is a component of the NF-κB activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wenzel, D.M., Lissounov, A., Brzovic, P.S. & Klevit, R.E. UbcH7-reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids. Nature published online, doi:10.1038/nature09966 (1 May 2011).

  49. Olzmann, J.A. et al. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell Biol. 178, 1025–1038 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lim, K.L. et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci. 25, 2002–2009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shimizu, Y., Okuda-Shimizu, Y. & Hendershot, L.M. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol. Cell 40, 917–926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ravid, T. & Hochstrasser, M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat. Cell Biol. 9, 422–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X. et al. Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. J. Cell Biol. 187, 655–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Laplantine, E. et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28, 2885–2895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cordier, F. et al. The zinc finger of NEMO is a functional ubiquitin-binding domain. J. Biol. Chem. 284, 2902–2907 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Sato, Y., Yoshikawa, A., Yamashita, M., Yamagata, A. & Fukai, S. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J. 28, 3903–3909 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K. & Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat. Struct. Mol. Biol. 16, 1328–1330 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Yoshikawa, A. et al. Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. FEBS Lett. 583, 3317–3322 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, S. & Chen, Z.J. Expanding role of ubiquitination in NF-κB signaling. Cell Res. 21, 6–21 (2011).

    Article  PubMed  Google Scholar 

  61. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Inn, K.S. et al. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol. Cell 41, 354–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lim, S. et al. Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol. Cell. Neurosci. 17, 385–397 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Eddins, M.J., Varadan, R., Fushman, D., Pickart, C.M. & Wolberger, C. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J. Mol. Biol. 367, 204–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. Embo Rep. 10, 466–473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. O'Donnell, M.A., Legarda-Addison, D., Skountzos, P., Yeh, W.C. & Ting, A.T. Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling. Curr. Biol. 17, 418–424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bertrand, M.J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Yamamoto, M. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat. Immunol. 7, 962–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Xu, M., Skaug, B., Zeng, W. & Chen, Z.J. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFα and IL-1β. Mol. Cell 36, 302–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Seymour, R.E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Liang, Y., Seymour, R.E. & Sundberg, J.P. Inhibition of NF-κB signaling retards eosinophilic dermatitis in SHARPIN-deficient mice. J. Invest. Dermatol. 131, 141–149 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Rape (University of California, Berkeley) and D. Komander (Medical Research Council) for providing coordinates for the structural models of ubiquitin and UBE2S. J.W.H. is supported by the US National Institutes of Health and Millennium Pharmaceuticals. C.B. is supported by the Emmy Noether Programm of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Wade Harper.

Ethics declarations

Competing interests

J.W.H. is a consultant for Millennium Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrends, C., Harper, J. Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol 18, 520–528 (2011). https://doi.org/10.1038/nsmb.2066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing