Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation

Abstract

ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F1) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F1 structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of EF1 structure.
Figure 2: Comparing ɛ's compact and extended conformations.
Figure 3: Interactions of ɛCTD within the central cavity of EF1.
Figure 4: Distinct conformations of three β subunits in EF1.
Figure 5: Insights for rotary mechanics of ATP synthase.
Figure 6: Comparing interactions with F1 for E. coli ɛCTD and the mitochondrial inhibitor IF1.
Figure 7: Model for transition between ɛC and ɛX states in EF1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Boyer, P.D. The ATP synthase–-a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Duncan, T.M. The ATP synthase: parts and properties of a rotary motor. in The Enzymes, vol. XXIII: Energy Coupling and Molecular Motors Vol. 23 (eds. Hackney, D.D. & Tamanoi, F.) 203–275 (Elsevie, New York, 2004).

  3. Junge, W., Sielaff, H. & Engelbrecht, S. Torque generation and elastic power transmission in the rotary FoF1-ATPase. Nature 459, 364–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Bowler, M.W., Montgomery, M.G., Leslie, A.G. & Walker, J.E. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J. Biol. Chem. 282, 14238–14242 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Gledhill, J.R., Montgomery, M.G., Leslie, A.G. & Walker, J.E. How the regulatory protein, IF1, inhibits F1-ATPase from bovine mitochondria. Proc. Natl. Acad. Sci. USA 104, 15671–15676 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Menz, R.I., Walker, J.E. & Leslie, A.G. Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106, 331–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Hausrath, A.C., Gruber, G., Matthews, B.W. & Capaldi, R.A. Structural features of the γ subunit of the Escherichia coli F1 ATPase revealed by a 4.4-Å resolution map obtained by x-ray crystallography. Proc. Natl. Acad. Sci. USA 96, 13697–13702 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stocker, A., Keis, S., Vonck, J., Cook, G.M. & Dimroth, P. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Structure 15, 904–914 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Shirakihara, Y. et al. The crystal structure of the nucleotide-free α3β3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5, 825–836 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Feniouk, B.A., Suzuki, T. & Yoshida, M. The role of subunit ɛ in the catalysis and regulation of FoF1-ATP synthase. Biochim. Biophys. Acta 1757, 326–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Richter, M.L. Gamma-epsilon interactions regulate the chloroplast ATP synthase. Photosynth. Res. 79, 319–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Gibbons, C., Montgomery, M.G., Leslie, A.G. & Walker, J.E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat. Struct. Biol. 7, 1055–1061 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Campanella, M., Parker, N., Tan, C.H., Hall, A.M. & Duchen, M.R. IF1: setting the pace of the F1Fo-ATP synthase. Trends Biochem. Sci. 34, 343–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Uhlin, U., Cox, G.B. & Guss, J.M. Crystal structure of the ɛ subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5, 1219–1230 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wilkens, S. & Capaldi, R.A. Solution structure of the ɛ subunit of the F1-ATPase from Escherichia coli and interactions of this subunit with β subunits in the complex. J. Biol. Chem. 273, 26645–26651 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Yagi, H. et al. Structures of the thermophilic F1-ATPase ɛ subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1 . Proc. Natl. Acad. Sci. USA 104, 11233–11238 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schulenberg, B. & Capaldi, R.A. The ɛ subunit of the F1Fo complex of Escherichia coli. Cross-linking studies show the same structure in situ as when isolated. J. Biol. Chem. 274, 28351–28355 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Dallmann, H.G., Flynn, T.G. & Dunn, S.D. Determination of the 1-ethyl-3-[(3-dimethylamino)propyl]-carbodiimide-induced cross-link between the β and ɛ subunits of Escherichia coli F1-ATPase. J. Biol. Chem. 267, 18953–18960 (1992).

    CAS  PubMed  Google Scholar 

  21. Rodgers, A.J. & Wilce, M.C. Structure of the γ-ɛ complex of ATP synthase. Nat. Struct. Biol. 7, 1051–1054 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Saita, E.I. et al. Activation and stiffness of the inhibited states of F1-ATPase probed by single-molecule manipulation. J. Biol. Chem. 285, 11441–11447 (2010).

    Article  Google Scholar 

  23. Iino, R., Hasegawa, R., Tabata, K.V. & Noji, H. Mechanism of inhibition by C-terminal α-helices of the ɛ subunit of Escherichia coli FoF1-ATP synthase. J. Biol. Chem. 284, 17457–17464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kabaleeswaran, V. et al. Asymmetric structure of the yeast F1 ATPase in the absence of bound nucleotides. J. Biol. Chem. 284, 10546–10551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Nishizaka, T. et al. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11, 142–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kabaleeswaran, V., Puri, N., Walker, J.E., Leslie, A.G. & Mueller, D.M. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. EMBO J. 25, 5433–5442 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pu, J. & Karplus, M. How subunit coupling produces the gamma-subunit rotary motion in F1-ATPase. Proc. Natl. Acad. Sci. USA 105, 1192–1197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sielaff, H. et al. Domain compliance and elastic power transmission in rotary FoF1-ATPase. Proc. Natl. Acad. Sci. USA 105, 17760–17765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilkens, S. & Capaldi, R.A. Asymmetry and structural changes in ECF1 examined by cryoelectronmicroscopy. Biol. Chem. Hoppe Seyler 375, 43–51 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann, B., Diez, M., Zarrabi, N., Graber, P. & Börsch, M. Movements of the ɛ-subunit during catalysis and activation in single membrane-bound H+-ATP synthase. EMBO J. 24, 2053–2063 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui, Q., Li, G., Ma, J. & Karplus, M. A normal mode analysis of structural plasticity in the biomolecular motor F1-ATPase. J. Mol. Biol. 340, 345–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Müller, M. et al. Rotary F1-ATPase. Is the C-terminus of subunit γ fixed or mobile? Eur. J. Biochem. 271, 3914–3922 (2004).

    Article  PubMed  Google Scholar 

  34. Keis, S., Stocker, A., Dimroth, P. & Cook, G.M. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the ɛ subunit. J. Bacteriol. 188, 3796–3804 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Slonczewski, J.L., Fujisawa, M., Dopson, M. & Krulwich, T.A. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv. Microb. Physiol. 55, 1–79 (2009).

    Article  PubMed  Google Scholar 

  36. Feniouk, B.A. & Junge, W. Regulation of the FoF1-ATP synthase: the conformation of subunit ɛ might be determined by directionality of subunit γ rotation. FEBS Lett. 579, 5114–5118 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Foster, J.W. Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol. 2, 898–907 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Mendel-Hartvig, J. & Capaldi, R.A. Nucleotide-dependent and dicyclohexylcarbodiimide-sensitive conformational changes in the ɛ subunit of Escherichia coli ATP synthase. Biochemistry 30, 10987–10991 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Lippe, G., Sorgato, M.C. & Harris, D.A. The binding and release of the inhibitor protein are governed independently by ATP and membrane potential in ox-heart submitochondrial vesicles. Biochim. Biophys. Acta 933, 12–21 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Fischer, S., Graber, P. & Turina, P. The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force. J. Biol. Chem. 275, 30157–30162 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Feniouk, B.A., Suzuki, T. & Yoshida, M. Regulatory interplay between proton motive force, ADP, phosphate, and subunit ɛ in bacterial ATP synthase. J. Biol. Chem. 282, 764–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Xiong, H., Zhang, D. & Vik, S.B. Subunit ɛ of the Escherichia coli ATP synthase: novel insights into structure and function by analysis of thirteen mutant forms. Biochemistry 37, 16423–16429 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Aggeler, R. & Capaldi, R.A. Nucleotide-dependent movement of the ɛ subunit between α and β subunits in the Escherichia coli F1Fo-type ATPase. J. Biol. Chem. 271, 13888–13891 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Ferrándiz, M.J. & de la Campa, A.G. The membrane-associated FoF1 ATPase is essential for the viability of Streptococcus pneumoniae. FEMS Microbiol. Lett. 212, 133–138 (2002).

    Article  PubMed  Google Scholar 

  45. Rao, S.P.S., Alonso, S., Rand, L., Dick, T. & Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 105, 11945–11950 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones, S.A. et al. Respiration of Escherichia coli in the mouse intestine. Infect. Immun. 75, 4891–4899 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dautant, A., Velours, J. & Giraud, M.-F. Crystal structure of the Mg•ADP-inhibited state of the yeast F1c10-ATP synthase. J. Biol. Chem. 285, 29502–29510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wise, J.G. Site-directed mutagenesis of the conserved β subunit tyrosine 331 of Escherichia coli ATP synthase yields catalytically active enzymes. J. Biol. Chem. 265, 10403–10409 (1990).

    CAS  PubMed  Google Scholar 

  49. Lee, R.S., Pagan, J., Wilke Mounts, S. & Senior, A.E. Characterization of Escherichia coli ATP synthase β-subunit mutations using a chromosomal deletion strain. Biochemistry 30, 6842–6847 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Schaefer, E.M., Hartz, D., Gold, L. & Simoni, R.D. Ribosome-binding sites and RNA-processing sites in the transcript of the Escherichia coli unc operon. J. Bacteriol. 171, 3901–3908 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Duncan, T.M., Bulygin, V.V., Zhou, Y., Hutcheon, M.L. & Cross, R.L. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc. Natl. Acad. Sci. USA 92, 10964–10968 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Bowler, M.W., Montgomery, M.G., Leslie, A.G. & Walker, J.E. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 103, 8646–8649 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  58. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  59. Duncan, T.M., Zhou, Y., Bulygin, V.V., Hutcheon, M.L. & Cross, R.L. Probing interactions of the Escherichia coli FoF1 ATP synthase β and γ subunits with disulphide cross-links. Biochem. Soc. Trans. 23, 736–741 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this work to the memory of Vladimir Bulygin, Ph.D. (1964–2009), who was instrumental in early stages of the project. We thank M. Hutcheon for skillful protein purification. Financial support was provided by the US National Institutes of Health (R01GM083088). We thank the staff at NSLS beamlines X6A, X25 (Brookhaven National Laboratory, Upton, New York, USA) and at macCHESS (Cornell University, Ithaca, New York, USA) for beam time and assistance in data collection.

Author information

Authors and Affiliations

Authors

Contributions

T.M.D. developed a purification protocol to obtain homogeneous EF1-δ. T.M.D. and G.C. crystallized EF1-δ. G.C. collected X-ray data and determined the crystal structure. T.M.D. wrote the manuscript with the help of G.C.

Corresponding authors

Correspondence to Gino Cingolani or Thomas M Duncan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 2356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cingolani, G., Duncan, T. Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18, 701–707 (2011). https://doi.org/10.1038/nsmb.2058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing