Article | Published:

Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome

Nature Structural & Molecular Biology volume 18, pages 715720 (2011) | Download Citation

Abstract

No-go decay (NGD) is a mRNA quality-control mechanism in eukaryotic cells that leads to degradation of mRNAs stalled during translational elongation. The key factors triggering NGD are Dom34 and Hbs1. We used cryo-EM to visualize NGD intermediates resulting from binding of the Dom34–Hbs1 complex to stalled ribosomes. At subnanometer resolution, all domains of Dom34 and Hbs1 were identified, allowing the docking of crystal structures and homology models. Moreover, the close structural similarity of Dom34 and Hbs1 to eukaryotic release factors (eRFs) enabled us to propose a model for the ribosome-bound eRF1–eRF3 complex. Collectively, our data provide structural insights into how stalled mRNA is recognized on the ribosome and how the eRF complex can simultaneously recognize stop codons and catalyze peptide release.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. 1.

    & Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 316–325 (2005).

  2. 2.

    et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

  3. 3.

    , , & Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

  4. 4.

    & Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006).

  5. 5.

    et al. Structural and functional insights into Dom34, a key component of no-go mRNA decay. Mol. Cell 27, 938–950 (2007).

  6. 6.

    , & Structure of yeast Dom34: a protein related to translation termination factor eRF1 and involved in No-Go decay. J. Biol. Chem. 283, 7145–7154 (2008).

  7. 7.

    , , & The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome. EMBO J. 21, 5302–5311 (2002).

  8. 8.

    , & Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA 8, 129–136 (2002).

  9. 9.

    et al. Analysis of Dom34 and its function in no-go decay. Mol. Biol. Cell 20, 3025–3032 (2009).

  10. 10.

    & Evolution of the eukaryotic translation termination system: origins of release factors. Mol. Biol. Evol. 17, 882–889 (2000).

  11. 11.

    , , & Novel G-protein complex whose requirement is linked to the translational status of the cell. Mol. Cell. Biol. 22, 2564–2574 (2002).

  12. 12.

    , & Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop off to initiate no-go decay. Science 330, 369–372 (2010).

  13. 13.

    et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

  14. 14.

    et al. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J. Biol. Chem. 278, 38287–38291 (2003).

  15. 15.

    et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).

  16. 16.

    et al. Structure of the 80S ribosome from Saccharomyces cerevisiae-tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001).

  17. 17.

    , , & Crystal structure of the eukaryotic ribosome. Science 330, 1203–1209 (2010).

  18. 18.

    et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution. Proc. Natl. Acad. Sci. USA 107, 19748–19753 (2010).

  19. 19.

    et al. Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome. Proc. Natl. Acad. Sci. USA 107, 19754–19759 (2010).

  20. 20.

    et al. Structure of the Dom34–Hbs1 complex and implications for no-go decay. Nat. Struct. Mol. Biol. 17, 1233–1240 (2010).

  21. 21.

    et al. Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1α complex. Proc. Natl. Acad. Sci. USA 107, 17575–17579 (2010).

  22. 22.

    et al. Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev. 23, 1106–1118 (2009).

  23. 23.

    et al. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol. Cell 14, 233–245 (2004).

  24. 24.

    et al. The crystal structure of human eukaryotic release factor eRF1–mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000).

  25. 25.

    , , , & Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011).

  26. 26.

    et al. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolution. EMBO J. 19, 2710–2718 (2000).

  27. 27.

    et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

  28. 28.

    et al. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J. 28, 755–765 (2009).

  29. 29.

    et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl. Acad. Sci. USA 106, 1063–1068 (2009).

  30. 30.

    et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

  31. 31.

    , , , & Crystal structures of nucleotide exchange intermediates in the eEF1A–eEF1Bα complex. Nat. Struct. Biol. 8, 531–534 (2001).

  32. 32.

    et al. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2, 334–341 (1996).

  33. 33.

    , , & Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560 (2010).

  34. 34.

    et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

  35. 35.

    , , & The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

  36. 36.

    , , & Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560 (2010).

  37. 37.

    et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009).

  38. 38.

    et al. Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J. Mol. Biol. 357, 1144–1153 (2006).

  39. 39.

    et al. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90–94 (2003).

  40. 40.

    et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. USA 105, 19684–19689 (2008).

  41. 41.

    et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008).

  42. 42.

    & Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

  43. 43.

    , & Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J. Mol. Biol. 199, 137–147 (1988).

  44. 44.

    et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

  45. 45.

    & Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

  46. 46.

    & SIGNATURE: a single-particle selection system for molecular electron microscopy. J. Struct. Biol. 157, 168–173 (2007).

  47. 47.

    , & The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

  48. 48.

    , , , & Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008).

  49. 49.

    , , , & Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).

Download references

Acknowledgements

We thank J. Musial for assistance in cloning, C. Ungewickell and J. Bürger (UltraStrukturNetzwerk Berlin) for assistance in cryo-EM data collection, S.W. Suh (Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea) for the gift of Dom34 and Hbs1 overexpression plasmids, K. Häussermann for assistance in cryo-EM data processing and D. Wilson for scientific discussions. This research was supported by grants from the Deutsche Forschungsgemeinschaft SFB594 and SFB646 (to R.B. and T.B.), SFB740 (to T.M.), by a Marie Curie international incoming fellowship within the Seventh European Community Framework Programme (to E.V.) and by the European Union and Senatsverwaltung für Wissenschaft, Forschung und Kultur Berlin (UltraStructureNetwork, Anwenderzentrum).

Author information

Affiliations

  1. Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.

    • Thomas Becker
    • , Jean-Paul Armache
    • , Alexander Jarasch
    • , Andreas M Anger
    • , Heidemarie Sieber
    • , Basma Abdel Motaal
    • , Otto Berninghausen
    •  & Roland Beckmann
  2. Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.

    • Elizabeth Villa
  3. UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany.

    • Thorsten Mielke
  4. Institut für Medizinische Physik und Biophysik, Charité–Universitätsmedizin, Berlin, Germany.

    • Thorsten Mielke

Authors

  1. Search for Thomas Becker in:

  2. Search for Jean-Paul Armache in:

  3. Search for Alexander Jarasch in:

  4. Search for Andreas M Anger in:

  5. Search for Elizabeth Villa in:

  6. Search for Heidemarie Sieber in:

  7. Search for Basma Abdel Motaal in:

  8. Search for Thorsten Mielke in:

  9. Search for Otto Berninghausen in:

  10. Search for Roland Beckmann in:

Contributions

T.B. collected, processed and analyzed all cryo-EM data and carried out docking and molecular interpretation; J.-P.A. provided models for S. cerevisiae ribosomal proteins; A.J. and A.M.A. provided models for S. cerevisiae ribosomal RNA; E.V. helped carry out molecular dynamics flexible fitting; H.S. did protein and RNC purifications, binding assays and northern blots; and B.A.M. cloned and purified the ΔN-Hbs1 protein. T.M. and O.B. assisted in cryo-EM data collection. T.B. and R.B. designed the study, analyzed data and wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Thomas Becker or Roland Beckmann.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–8, Supplementary Methods and Supplementary Tables 1–5

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nsmb.2057

Further reading