Nemo kinase phosphorylates β-catenin to promote ommatidial rotation and connects core PCP factors to E-cadherin–β-catenin

Abstract

Frizzled planar cell polarity (PCP) signaling regulates cell motility in several tissues, including ommatidial rotation in Drosophila melanogaster. The Nemo kinase (Nlk in vertebrates) has also been linked to cell-motility regulation and ommatidial rotation but its mechanistic role(s) during rotation remain obscure. We show that nemo functions throughout the entire rotation movement, increasing the rotation rate. Genetic and molecular studies indicate that Nemo binds both the core PCP factor complex of Strabismus–Prickle, as well as the E-cadherin–β-catenin (E-cadherin–Armadillo in Drosophila) complex. These two complexes colocalize and, like Nemo, also promote rotation. Strabismus (also called Vang) binds and stabilizes Nemo asymmetrically within the ommatidial precluster; Nemo and β-catenin then act synergistically to promote rotation, which is mediated in vivo by Nemo's phosphorylation of β-catenin. Our data suggest that Nemo serves as a conserved molecular link between core PCP factors and E-cadherin–β-catenin complexes, promoting cell motility.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: nmo is required throughout ommatidial rotation.
Figure 2: nmo is required in a cluster-autonomous manner for rotation.
Figure 3: Increased Nmo levels raise the rotation rate.
Figure 4: Nmo interacts physically and genetically with Stbm and Pk.
Figure 5: Nmo binds and phosphorylates β-cat and cadherin.
Figure 6: The activity of β-cat is modulated by Nmo in vivo.

References

  1. 1

    Wolff, T. & Ready, D.F. Pattern formation in the Drosophila retina. in The Development of Drosophila melanogaster (ed. Martinez-Arias, M.B.A.) 1277–1326 (Cold Spring Harbor Press, 1993).

  2. 2

    Mlodzik, M. Planar polarity in the Drosophila eye: a multifaceted view of signaling specificity and cross-talk. EMBO J. 18, 6873–6879 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Seifert, J.R. & Mlodzik, M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat. Rev. Genet. 8, 126–138 (2007).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Wang, Y. & Nathans, J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134, 647–658 (2007).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Mirkovic, I. & Mlodzik, M. Cooperative activities of Drosophila DE-cadherin and DN-cadherin regulate the cell motility process of ommatidial rotation. Development 133, 3283–3293 (2006).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Solnica-Krezel, L. Conserved patterns of cell movements during vertebrate gastrulation. Curr. Biol. 15, R213–R228 (2005).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Choi, K.-W. & Benzer, S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78, 125–136 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Fiehler, R.W. & Wolff, T. Nemo is required in a subset of photoreceptors to regulate the speed of ommatidial rotation. Dev. Biol. 313, 533–544 (2008).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Winter, C.G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105, 81–91 (2001).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Brown, K.E. & Freeman, M. Egfr signalling defines a protective function for ommatidial orientation in the Drosophila eye. Development 130, 5401–5412 (2003).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Gaengel, K. & Mlodzik, M. Egfr signaling regulates ommatidial rotation and cell motility in the Drosophila eye via MAPK/Pnt signaling and the Ras effector Canoe/AF6. Development 130, 5413–5423 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Strutt, H. & Strutt, D. EGF signaling and ommatidial rotation in the Drosophila eye. Curr. Biol. 13, 1451–1457 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Chou, Y.H. & Chien, C.T. Scabrous controls ommatidial rotation in the Drosophila compound eye. Dev. Cell 3, 839–850 (2002).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Fiehler, R.W. & Wolff, T. Drosophila Myosin II, Zipper, is essential for ommatidial rotation. Dev. Biol. 310, 348–362 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Classen, A.K., Anderson, K.I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Takeichi, M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59, 237–252 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Tepass, U. et al. shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev. 10, 672–685 (1996).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Gumbiner, B.M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6, 622–634 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Chen, Y.T., Stewart, D.B. & Nelson, W.J. Coupling assembly of the E-cadherin/beta-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol. 144, 687–699 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Huber, A.H., Stewart, D.B., Laurents, D.V., Nelson, W.J. & Weis, W.I. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J. Biol. Chem. 276, 12301–12309 (2001).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Drees, F., Pokutta, S., Yamada, S., Nelson, W.J. & Weis, W.I. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Imamura, Y., Itoh, M., Maeno, Y., Tsukita, S. & Nagafuchi, A. Functional domains of alpha-catenin required for the strong state of cadherin-based cell adhesion. J. Cell Biol. 144, 1311–1322 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Weis, W.I. & Nelson, W.J. Re-solving the cadherin-catenin-actin conundrum. J. Biol. Chem. 281, 35593–35597 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Stappert, J. & Kemler, R. A short core region of E-cadherin is essential for catenin binding and is highly phosphorylated. Cell Adhes. Commun. 2, 319–327 (1994).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Daugherty, R.L. & Gottardi, C.J. Phospho-regulation of beta-catenin adhesion and signaling functions. Physiology (Bethesda) 22, 303–309 (2007).

    CAS  Google Scholar 

  26. 26

    Kuroda, S. et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Science 281, 832–835 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Nieset, J.E. et al. Characterization of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin. J. Cell Sci. 110, 1013–1022 (1997).

    CAS  PubMed  Google Scholar 

  28. 28

    Yap, A.S., Niessen, C.M. & Gumbiner, B.M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol. 141, 779–789 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Ishitani, T. et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399, 798–802 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Meneghini, M.D. et al. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399, 793–797 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Zeng, Y.A. & Verheyen, E.M. Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development. Development 131, 2911–2920 (2004).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Verheyen, E.M. et al. The tissue polarity gene nemo carries out multiple roles in patterning during Drosophila development. Mech. Dev. 101, 119–132 (2001).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Zeng, Y.A., Rahnama, M., Wang, S., Sosu-Sedzorme, W. & Verheyen, E.M. Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation. Development 134, 2061–2071 (2007).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Ishitani, T. et al. Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nat. Cell Biol. 12, 278–285 (2010).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Weber, U., Pataki, C., Mihaly, J. & Mlodzik, M. Combinatorial signaling by the Frizzled/PCP and Egfr pathways during planar cell polarity establishment in the Drosophila eye. Dev. Biol. 316, 110–123 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Basler, K., Siegrist, P. & Hafen, E. The spatial and temporal expression pattern of sevenless is exclusively controlled by gene-internal elements. EMBO J. 8, 2381–2386 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Wolff, T. & Rubin, G.M. strabismus, a novel gene that regulates tissue polarity and cell fate decisions in Drosophila. Development 125, 1149–1159 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    Strutt, D., Johnson, R., Cooper, K. & Bray, S. Asymmetric localization of frizzled and the determination of Notch-dependent cell fate in the Drosophila eye. Curr. Biol. 12, 813–824 (2002).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Nelson, W.J. & Nusse, R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Pai, L.M., Orsulic, S., Bejsovec, A. & Peifer, M. Negative regulation of Armadillo, a Wingless effector in Drosophila. Development 124, 2255–2266 (1997).

    CAS  PubMed  Google Scholar 

  41. 41

    Mirkovic, I., Charish, K., Gorski, S.M., McKnight, K. & Verheyen, E.M. Drosophila nemo is an essential gene involved in the regulation of programmed cell death. Mech. Dev. 119, 9–20 (2002).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Djiane, A., Yogev, S. & Mlodzik, M. The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 121, 621–631 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Wu, J., Klein, T.J. & Mlodzik, M. Subcellular localization of frizzled receptors, mediated by their cytoplasmic tails, regulates signaling pathway specificity. PLoS Biol. 2, 1004–1014 (2004).

    CAS  Google Scholar 

  44. 44

    Courbard, J.R., Djiane, A., Wu, J. & Mlodzik, M. The apical/basal-polarity determinant Scribble cooperates with the PCP core factor Stbm/Vang and functions as one of its effectors. Dev. Biol. 333, 67–77 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Nagafuchi, A., Ishihara, S. & Tsukita, S. The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin-alpha catenin fusion molecules. J. Cell Biol. 127, 235–245 (1994).

    CAS  Article  Google Scholar 

  46. 46

    Dumstrei, K., Wang, F., Shy, D., Tepass, U. & Hartenstein, V. Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. Development 129, 3983–3994 (2002).

    CAS  PubMed  Google Scholar 

  47. 47

    Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J.C., Eaton, S. & Zallen, J.A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Simões, S.M. et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    Article  Google Scholar 

  50. 50

    Shewan, A.M. et al. Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol. Biol. Cell 16, 4531–4542 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Ulrich, F. et al. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130, 5375–5384 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Thorpe, C.J. & Moon, R.T. nemo-like kinase is an essential co-activator of Wnt signaling during early zebrafish development. Development 131, 2899–2909 (2004).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Ulrich, F. et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9, 555–564 (2005).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Jenny, A., Reynolds-Kenneally, J., Das, G., Burnett, M. & Mlodzik, M. Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding. Nat. Cell Biol. 7, 691–697 (2005).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  56. 56

    Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Billuart, P., Winter, C.G., Maresh, A., Zhao, X. & Luo, L. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 107, 195–207 (2001).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Chen (Baylor College of Medicine), T. Clandinin (Stanford School of Medicine), H. Oda and S. Tsukita (Japan Science and Technology Corporation, Kyoto), P. Rørth (Institute of Molecular and Cell Biology, Singapore), K. Saigo (University of Tokyo), U. Tepass (University of Toronto), N. Tolwinski (Sloan-Kettering Institute), T. Uemura (Kyoto University), W. Weis (Stanford University), T. Wolff (Howard Hughes Medical Institute, Janelia Farm), B. Mollereau (Rockefeller University) and the Bloomington stock center for flies and reagents, S. Okello and Y.A. Zeng for technical assistance, N. Maj for help in generating the rose diagrams, J. Delaney and U. Weber for comments on the manuscript, and all members of the Mlodzik laboratory for helpful discussions. This work was supported by US National Institutes of Health, National Eye Institute grant RO1 EY14597 to M.M., by Natural Sciences and Engineering Research Council of Canada grant RGPIN/203545 and Canadian Institutes of Health Research grant MOP 62895 to E.V., and US National Institutes of Health grant GM076561 to C.J.G.

Author information

Affiliations

Authors

Contributions

I.M. and M.M. designed experiments; I.M., W.J.G., M.R., A.J. and K.G. conducted experiments and analyzed data; A.J., W.J.G. and C.J.G. edited the manuscript; D.B. generated the nmoDB allele; C.J.G. conducted biochemical experiments with β-cat and Nmo; I.M., E.M.V. and M.M. analyzed data and prepared the manuscript.

Corresponding authors

Correspondence to Esther M Verheyen or Marek Mlodzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–8 and Supplementary Methods (PDF 15557 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mirkovic, I., Gault, W., Rahnama, M. et al. Nemo kinase phosphorylates β-catenin to promote ommatidial rotation and connects core PCP factors to E-cadherin–β-catenin. Nat Struct Mol Biol 18, 665–672 (2011). https://doi.org/10.1038/nsmb.2049

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing