Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition and maturation of effector RNAs in a CRISPR interference pathway

Abstract

In bacteria and archaea, small RNAs derived from clustered, regularly interspaced, short palindromic repeat (CRISPR) loci are involved in an adaptable and heritable gene-silencing pathway. Resistance to phage infection is conferred by the incorporation of short invading DNA sequences into the genome as CRISPR spacer elements separated by short repeat sequences. Processing of long primary transcripts (pre-crRNAs) containing these repeats by an RNA endonuclease generates the mature effector RNAs that interfere with phage gene expression. Here we describe structural and functional analyses of the Thermus thermophilus CRISPR Cse3 endonuclease. High-resolution X-ray structures of Cse3 bound to repeat RNAs model both the pre- and post-cleavage complexes associated with processing the pre-crRNA. These structures establish the molecular basis of a specific CRISPR RNA recognition and suggest the mechanism for generation of effector RNAs responsible for gene silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processing of pre-crRNA by Cse3.
Figure 2: Structure of the Cse3 substrate–RNA complex.
Figure 3: Structural basis for cleavage of pre-crRNA by Cse3.
Figure 4: Modular organization of pre-crRNA recognition and processing revealed by comparison of Cse3 and Csy4 RNA complexes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakata, A., Amemura, M. & Makino, K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171, 3553–3556 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carte, J., Wang, R., Li, H., Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jansen, R., Embden, J.D., Gaastra, W. & Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Marraffini, L.A. & Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haft, D.H., Selengut, J., Mongodin, E.F. & Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, e60 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Makarova, K.S., Grishin, N., Shabalina, S., Wolf, Y. & Koonin, E. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7–33 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172–182 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Agari, Y. et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395, 270–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Han, D. & Krauss, G. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett. 583, 771–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Pougach, K. et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol. 77, 1367–1379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xue, S., Calvin, K. & Li, H. RNA recognition and cleavage by a splicing endonuclease. Science 312, 906–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Calvin, K., Xue, S., Ellis, C., Mitchell, M. & Li, H. Probing the catalytic triad of an archaeal RNA splicing endonuclease. Biochemistry 47, 13659–13665 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Ebihara, A. et al. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci. 15, 1494–1499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835–845 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398, 579–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, R., Preamplume, G., Terns, M.P., Terns, R.M. & Li, H. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19, 257–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidt, B.H., Burgin, A.B., Deweese, J.W., Osheroff, N. & Berger, J.M. A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature 465, 641–644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guillén Schlippe, Y.V. & Hedstrom, L. A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch. Biochem. Biophys. 433, 266–278 (2005).

    Article  PubMed  Google Scholar 

  25. Steitz, T.A. & Steitz, J.A. A general two-metal ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90, 6498–6502 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Igloi, G.L. & Kossel, H. Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid. Nucleic Acids Res. 13, 6881–6898 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  29. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Lovell, S.C. et al. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins 50, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to A.M.M. We are also grateful for the support of the Alberta Synchrotron Institute during the early stages of this work.

Author information

Authors and Affiliations

Authors

Contributions

E.M.G. cloned, expressed and biochemically characterized Cse3 and Cse3 mutants, purified the proteins and protein–RNA complexes and grew the crystals. M.J.S. solved the structures. E.L.G. and M.M.G. cloned, expressed and purified Cse3 mutants. E.M.G., M.J.S., E.L.G. and A.M.M. designed the experiments and contributed to writing the manuscript.

Corresponding author

Correspondence to Andrew M MacMillan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1743 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesner, E., Schellenberg, M., Garside, E. et al. Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat Struct Mol Biol 18, 688–692 (2011). https://doi.org/10.1038/nsmb.2042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing