Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternative splicing of SYK regulates mitosis and cell survival

Abstract

Most human genes produce multiple mRNA isoforms through alternative splicing. However, the biological relevance of most splice variants remains unclear. In this study, we evaluated the functional impact of alternative splicing in cancer cells. We modulated the splicing pattern of 41 cancer-associated splicing events and scored the effects on cell growth, viability and apoptosis, identifying three isoforms essential for cell survival. Specifically, changing the splicing pattern of the spleen tyrosine kinase gene (SYK) impaired cell-cycle progression and anchorage-independent growth. Notably, exposure of cancer cells to epithelial growth factor modulated the SYK splicing pattern to promote the pro-survival isoform that is associated with cancer tissues in vivo. The data suggest that splicing of selected genes is specifically modified during tumor development to allow the expression of isoforms that promote cancer cell survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for functional annotation of cancer-associated ASEs.
Figure 2: Targeting of SYK, MCL1 or FN1-EDB alternatively spliced isoforms induces apoptosis.
Figure 3: SYK alternative splicing regulates cell-cycle progression and mitosis.
Figure 4: SYK(L) promotes malignancy and anchorage-independent growth.
Figure 5: A model of the different functions of the SYK(L) pro-survival isoform.

Similar content being viewed by others

References

  1. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Castle, J.C. et al. Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat. Genet. 40, 1416–1425 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venables, J.P. et al. Cancer-associated regulation of alternative splicing. Nat. Struct. Mol. Biol. 16, 670–676 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Venables, J.P. Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Cooper, D.L. & Dougherty, G.J. To metastasize or not? Selection of CD44 splice sites. Nat. Med. 1, 635–637 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Christofk, H.R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Levanon, E.Y. & Sorek, R. The importance of alternative splicing in the drug discovery process. Targets 2, 109–114 (2003).

    Article  CAS  Google Scholar 

  10. Iorns, E., Lord, C.J., Turner, N. & Ashworth, A. Utilizing RNA interference to enhance cancer drug discovery. Nat. Rev. Drug Discov. 6, 556–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Klinck, R. et al. Multiple alternative splicing markers for ovarian cancer. Cancer Res. 68, 657–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Venables, J.P. et al. Identification of alternative splicing markers for breast cancer. Cancer Res. 68, 9525–9531 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Celotto, A.M. & Graveley, B.R. Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA 8, 718–724 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Villemaire, J., Dion, I., Elela, S.A. & Chabot, B. Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J. Biol. Chem. 278, 50031–50039 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Baudot, A.D. et al. The tyrosine kinase Syk regulates the survival of chronic lymphocytic leukemia B cells through PKCdelta and proteasome-dependent regulation of Mcl-1 expression. Oncogene 28, 3261–3273 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Gobessi, S. et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 23, 686–697 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Adams, K.W. & Cooper, G.M. Rapid turnover of mcl-1 couples translation to cell survival and apoptosis. J. Biol. Chem. 282, 6192–6200 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Bingle, C.D. et al. Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. J. Biol. Chem. 275, 22136–22146 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, L. et al. Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Res. 63, 4724–4730 (2003).

    CAS  PubMed  Google Scholar 

  20. Zhou, F., Hu, J., Ma, H., Harrison, M.L. & Geahlen, R.L. Nucleocytoplasmic trafficking of the Syk protein tyrosine kinase. Mol. Cell. Biol. 26, 3478–3491 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaulian, E. AP-1—the Jun proteins: oncogenes or tumor suppressors in disguise? Cell. Signal. 22, 894–899 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Wisdom, R., Johnson, R.S. & Moore, C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J. 18, 188–197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bennett, B.L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akgul, C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell. Mol. Life Sci. 66, 1326–1336 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Michels, J., Johnson, P.W. & Packham, G. Mcl-1. Int. J. Biochem. Cell Biol. 37, 267–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Bae, J., Leo, C.P., Hsu, S.Y. & Hsueh, A.J. MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J. Biol. Chem. 275, 25255–25261 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Shieh, J.J., Liu, K.T., Huang, S.W., Chen, Y.J. & Hsieh, T.Y. Modification of alternative splicing of Mcl-1 pre-mRNA using antisense morpholino oligonucleotides induces apoptosis in basal cell carcinoma cells. J. Invest. Dermatol. 129, 2497–2506 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Mócsai, A., Ruland, J. & Tybulewicz, V.L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Coopman, P.J. et al. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406, 742–747 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Moroni, M. et al. Progressive loss of Syk and abnormal proliferation in breast cancer cells. Cancer Res. 64, 7346–7354 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Zyss, D. et al. The Syk tyrosine kinase localizes to the centrosomes and negatively affects mitotic progression. Cancer Res. 65, 10872–10880 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Faruki, S., Geahlen, R.L. & Asai, D.J. Syk-dependent phosphorylation of microtubules in activated B-lymphocytes. J. Cell Sci. 113, 2557–2565 (2000).

    CAS  PubMed  Google Scholar 

  33. Peters, J.D., Furlong, M.T., Asai, D.J., Harrison, M.L. & Geahlen, R.L. Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates alpha-tubulin on tyrosine. J. Biol. Chem. 271, 4755–4762 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Feldman, A.L. et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia 22, 1139–1143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buchner, M. et al. Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 69, 5424–5432 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Nakashima, H. et al. Clinical significance of nuclear expression of spleen tyrosine kinase (Syk) in gastric cancer. Cancer Lett. 236, 89–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Luangdilok, S. et al. Syk tyrosine kinase is linked to cell motility and progression in squamous cell carcinomas of the head and neck. Cancer Res. 67, 7907–7916 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Goodman, P.A., Wood, C.M., Vassilev, A., Mao, C. & Uckun, F.M. Spleen tyrosine kinase (Syk) deficiency in childhood pro-B cell acute lymphoblastic leukemia. Oncogene 20, 3969–3978 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Blaustein, M. et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat. Struct. Mol. Biol. 12, 1037–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Shin, C. & Manley, J.L. Cell signalling and the control of pre-mRNA splicing. Nat. Rev. Mol. Cell Biol. 5, 727–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Mandal, M. et al. Growth factors regulate heterogeneous nuclear ribonucleoprotein K expression and function. J. Biol. Chem. 276, 9699–9704 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Ashton-Beaucage, D. et al. The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143, 251–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Roignant, J.Y. & Treisman, J.E. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 143, 238–250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nicke, B. et al. Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol. Cell 20, 673–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hendzel, M.J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Brosseau, J.P. et al. High-throughput quantification of splicing isoforms. RNA 16, 442–449 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Venables, J.P. et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol. Cell. Biol. 28, 6033–6043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Birmingham, A. et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat. Methods 6, 569–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chung, N. et al. Median absolute deviation to improve hit selection for genome-scale RNAi screens. J. Biomol. Screen. 13, 149–158 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to C. Rancourt (Département de Microbiologie, Université de Sherbrooke) for providing cell lines and help in the initial setup phase of the project and to B. Lamontagne and L. Bergeron Jr. for assay setup and help with troubleshooting. We thank the Réseau de Recherche sur le Cancer (Fonds de la Recherche en Santé du Québec; FRSQ) tissue bank for ovarian tumor tissues and L. Volkov for help with flow cytometry. This work was funded by Genome Canada/Génome Québec and National Cancer Institute of Canada grant no. 700529. B.C. is the Canada Research Chair in Functional Genomics. J.-P.P. is the Canada Research Chair on Genomics and Catalytic RNA. S.A.E. is a Chercheur National of the FRSQ.

Author information

Authors and Affiliations

Authors

Contributions

D. Garneau, M.B., D. Gendron., S.C., J.-P.B., E.L. and M.D. carried out experiments and analyzed data and J.-F.L., P.T. and J.G.-B. analyzed data and prepared the figures. J.-F.L. developed the ISI design program and the FASE statistics and bioinformatics analysis tools. J.-P.B., K.T., E.L. and P.T. developed the qPCR procedures used to evaluate ISI impact on splicing. H.N. did the histopathological review of tissue specimens. P.P., K.T., R.K., J.-P.P., B.C., R.J.W. and S.A.E. designed experiments, discussed data and participated in the writing of the paper. P.P. and K.T. supervised experiments and analyzed data. P.P. and S.A.E. wrote the manuscript.

Corresponding author

Correspondence to Sherif Abou Elela.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1 and 3, and Supplementary Methods (PDF 3282 kb)

Supplementary Table 2

Primary FASE screen results. The results of the primary screen are shown, and the numbers of ISIs that are above the Z-score cut-off (>3) are indicated for each gene and each assay separately. Only ASEs with more than two positive ISIs per assay were retained for the validation phase (phase 2). (XLS 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prinos, P., Garneau, D., Lucier, JF. et al. Alternative splicing of SYK regulates mitosis and cell survival. Nat Struct Mol Biol 18, 673–679 (2011). https://doi.org/10.1038/nsmb.2040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing