Brief Communication | Published:

An effect of DNA sequence on nucleosome occupancy and removal

Nature Structural & Molecular Biology volume 18, pages 507509 (2011) | Download Citation

Abstract

A barrier phases nucleosomes at the yeast (Saccharomyces cerevisiae) GAL1–GAL10 genes. Here we separate nucleosome positioning from occupancy and show that the degree of occupancy of these phased sites is predictably determined by the underlying DNA sequences. As this occupancy is increased (by sequence alteration), nucleosome removal upon induction is decreased, as is mRNA production. These results explain why promoter sequences have evolved to form nucleosomes relatively inefficiently.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Cell 141, 407–418 (2010).

  2. 2.

    et al. PLoS Biol. 6, 2928–2939 (2008).

  3. 3.

    et al. PLoS ONE 5, e15754 (2010).

  4. 4.

    , , , & Proc. Natl. Acad. Sci. USA 107, 20998–21003 (2010).

  5. 5.

    , & J. Mol. Biol. 191, 659–675 (1986).

  6. 6.

    et al. Nature 442, 772–778 (2006).

  7. 7.

    & Curr. Opin. Struct. Biol. 19, 65–71 (2009).

  8. 8.

    , & Nucleic Acids Res. 38, 709–719 (2010).

  9. 9.

    & BMC Bioinformatics 10, 442 (2009).

  10. 10.

    et al. Nature 461, 1248–1253 (2009).

  11. 11.

    & Phil. Trans. R. Soc. Lond. B 317, 537–561 (1987).

  12. 12.

    et al. Nature 458, 362–366 (2009).

  13. 13.

    & Nucleic Acids Res. 38, 5672–5680 (2010).

  14. 14.

    et al. Mol. Cell 38, 590–602 (2010).

  15. 15.

    & Cell 104, 839–847 (2001).

  16. 16.

    et al. Zebrafish 5, 97–110 (2008).

  17. 17.

    & Biochim. Biophys. Acta 1681, 59–73 (2005).

  18. 18.

    , , & Genetics 172, 795–809 (2006).

  19. 19.

    et al. PLoS ONE 5, e9129 (2010).

  20. 20.

    , , , & Genome Biol. 5, R62 (2004).

  21. 21.

    , , , & Nat. Genet. 36, 900–905 (2004).

  22. 22.

    , & Mol. Cell 18, 735–748 (2005).

  23. 23.

    et al. Nat. Struct. Mol. Biol. 16, 847–852 (2009).

  24. 24.

    Curr. Biol. 19, R234–R241 (2009).

Download references

Acknowledgements

We thank E. Segal (Weizmann Institute of Science) and J. Widom (Northwestern University) for the “superbinder” sequence and S. Narayan, G. Berrozpe, A. Gann and D. Rhodes for helpful discussions. This work was supported by US National Institutes of Health grant GM032308 to M.P.

Author information

Author notes

    • Xin Wang
    •  & Gene O Bryant

    These authors contributed equally to this work.

Affiliations

  1. Molecular Biology Program, Sloan-Kettering Institute, New York, New York, USA.

    • Xin Wang
    • , Gene O Bryant
    • , Monique Floer
    • , Dan Spagna
    •  & Mark Ptashne

Authors

  1. Search for Xin Wang in:

  2. Search for Gene O Bryant in:

  3. Search for Monique Floer in:

  4. Search for Dan Spagna in:

  5. Search for Mark Ptashne in:

Contributions

X.W., G.O.B. and M.P. designed the experiments. X.W., G.O.B. and D.S. performed the experiments. X.W. and G.O.B. analyzed the data. X.W., G.O.B., M.F. and M.P. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Mark Ptashne.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figure 1, Supplementary Table 1 and Supplementary Methods

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nsmb.2017

Further reading