Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MutS switches between two fundamentally distinct clamps during mismatch repair

This article has been updated

Abstract

Single-molecule trajectory analysis has suggested DNA repair proteins may carry out a one-dimensional (1D) search on naked DNA encompassing >10,000 nucleotides. Organized cellular DNA (chromatin) presents substantial barriers to such lengthy searches. Using dynamic single-molecule fluorescence resonance energy transfer, we determined that the mismatch repair (MMR) initiation protein MutS forms a transient clamp that scans duplex DNA for mismatched nucleotides by 1D diffusion for 1 s (~700 base pairs) while in continuous rotational contact with the DNA. Mismatch identification provokes ATP binding (3 s) that induces distinctly different MutS sliding clamps with unusual stability on DNA (~600 s), which may be released by adjacent single-stranded DNA (ssDNA). These observations suggest that ATP transforms short-lived MutS lesion scanning clamps into highly stable MMR signaling clamps that are capable of competing with chromatin and recruiting MMR machinery, yet are recycled by ssDNA excision tracts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Single-molecule FRET of Taq MutS on duplex DNA.
Figure 2: Taq MutS scans duplex DNA by rotational diffusion.
Figure 3: Single-molecule FRET of Taq MutS binding to a +dT mismatch.
Figure 4: ATP induces a long-lived FRET state of MutS.
Figure 5: Single-stranded DNA provokes the release of ATP-bound MutS sliding clamps.
Figure 6: Role of distinct MutS clamps in molecular switch model for MMR.

Accession codes

Accessions

Protein Data Bank

Change history

  • 13 February 2011

    In the version of this article initially published online, the x axis for the right-hand graph in Figure 5c and the x axis for the graph in Figure 5d should have read 'Dwell time (s)'. The error has been corrected in all versions of this article.

References

  1. 1

    Kolodner, R.D. & Marsischky, G.T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Modrich, P. & Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65, 101–133 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Kolodner, R.D., Mendillo, M.L. & Putnam, C.D. Coupling distant sites in DNA during DNA mismatch repair. Proc. Natl. Acad. Sci. USA 104, 12953–12954 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Acharya, S., Foster, P.L., Brooks, P. & Fishel, R. The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol. Cell 12, 233–246 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Gradia, S., Acharya, S. & Fishel, R. The role of mismatched nucleotides in activating the hMSH2-hMSH6 molecular switch. J. Biol. Chem. 275, 3922–3930 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Berg, O.G., Winter, R.B. & von Hippel, P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

    CAS  Article  Google Scholar 

  7. 7

    Riggs, A.D., Bourgeois, S. & Cohn, M. The lac repressor-operator interaction. 3. Kinetic studies. J. Mol. Biol. 53, 401–417 (1970).

    CAS  Article  Google Scholar 

  8. 8

    Blainey, P.C., van Oijen, A.M., Banerjee, A., Verdine, G.L. & Xie, X.S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl. Acad. Sci. USA 103, 5752–5757 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Gorman, J. et al. Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2–Msh6. Mol. Cell 28, 359–370 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Wolffe, A.P. & Guschin, D. Review: chromatin structural features and targets that regulate transcription. J. Struct. Biol. 129, 102–122 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Fox, R.F. Rectified Brownian movement in molecular and cell biology. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57, 2177–2203 (1998).

    CAS  Google Scholar 

  12. 12

    Fox, R.F. & Choi, M.H. Rectified Brownian motion and kinesin motion along microtubules. Phys. Rev. E 63, 051901 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Biswas, I. & Hsieh, P. Identification and characterization of a thermostable MutS homolog from Thermus aquaticus. J. Biol. Chem. 271, 5040–5048 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Murphy, M.C., Rasnik, I., Cheng, W., Lohman, T.M. & Ha, T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J. 86, 2530–2537 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Karran, P. & Hampson, R. Genomic instability and tolerance to alkylating agents. Cancer Surv. 28, 69–85 (1996).

    CAS  PubMed  Google Scholar 

  18. 18

    Karran, P. & Marinus, M.G. Mismatch correction at O6-methylguanine residues in E. coli DNA. Nature 296, 868–869 (1982).

    CAS  Article  Google Scholar 

  19. 19

    Blainey, P.C. et al. Nonspecifically bound proteins spin while diffusing along DNA. Nat. Struct. Mol. Biol. 16, 1224–1229 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Tessmer, I. et al. Mechanism of MutS searching for DNA mismatches and signaling repair. J. Biol. Chem. 283, 36646–36654 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Schofield, M.J., Nayak, S., Scott, T.H., Du, C. & Hsieh, P. Interaction of Escherichia coli MutS and MutL at a DNA mismatch. J. Biol. Chem. 276, 28291–28299 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Yang, Y., Sass, L.E., Du, C., Hsieh, P. & Erie, D.A. Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res. 33, 4322–4334 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Abeliovich, H. An empirical extremum principle for the hill coefficient in ligand-protein interactions showing negative cooperativity. Biophys. J. 89, 76–79 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Lamers, M.H., Winterwerp, H.H. & Sixma, T.K. The alternating ATPase domains of MutS control DNA mismatch repair. EMBO J. 22, 746–756 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Gradia, S. et al. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3, 255–261 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Javaid, S. et al. Nucleosome remodeling by hMSH2-hMSH6. Mol. Cell 36, 1086–1094 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Laurence, T.A. et al. Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J. Biol. Chem. 283, 22895–22906 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Mather, W.H. & Fox, R.F. Kinesin's biased stepping mechanism: amplification of neck linker zippering. Biophys. J. 91, 2416–2426 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Gradia, S., Acharya, S. & Fishel, R. The human mismatch recognition complex hMSH2–hMSH6 functions as a novel molecular switch. Cell 91, 995–1005 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Fishel, R. Mismatch repair, molecular switches, and signal transduction. Genes Dev. 12, 2096–2101 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Fishel, R. Signaling mismatch repair in cancer. Nat. Med. 5, 1239–1241 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Fishel, R. The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res. 61, 7369–7374 (2001).

    CAS  Google Scholar 

  33. 33

    Hampel, H. et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N. Engl. J. Med. 352, 1851–1860 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Li, G.-W., Berg, O.G. & Elf, J. Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nat. Phys. 5, 294–297 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Constantin, N., Dzantiev, L., Kadyrov, F.A. & Modrich, P. Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J. Biol. Chem. 280, 39752–39761 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Lahue, R.S., Au, K.G. & Modrich, P. DNA mismatch correction in a defined system. Science 245, 160–164 (1989).

    CAS  Article  Google Scholar 

  37. 37

    Blackwell, L.J., Martik, D., Bjornson, K.P., Bjornson, E.S. & Modrich, P. Nucleotide-promoted release of hMutS from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J. Biol. Chem. 273, 32055–32062 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Lau, P.J. & Kolodner, R.D. Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J. Biol. Chem. 278, 14–17 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Shell, S.S., Putnam, C.D. & Kolodner, R.D. The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA. Mol. Cell 26, 565–578 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Mazurek, A., Johnson, C.N., Germann, M.W. & Fishel, R. Sequence context effect for hMSH2–hMSH6 mismatch–dependent activation. Proc. Natl. Acad. Sci. USA 106, 4177–4182 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Lamers, M.H. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature 407, 711–717 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Obmolova, G., Ban, C., Hsieh, P. & Yang, W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407, 703–710 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Warren, J.J. et al. Structure of the human MutSα DNA lesion recognition complex. Mol. Cell 26, 579–592 (2007).

    CAS  Article  Google Scholar 

  44. 44

    Mendillo, M.L., Mazur, D.J. & Kolodner, R.D. Analysis of the interaction between the Saccharomyces cerevisiae MSH2–MSH6 and MLH1–PMS1 complexes with DNA using a reversible DNA end–blocking system. J. Biol. Chem. 280, 22245–22257 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Heo, S.D., Cho, M., Ku, J.K. & Ban, C. Steady–state ATPase activity of E. coli MutS modulated by its dissociation from heteroduplex DNA. Biochem. Biophys. Res. Commun. 364, 264–269 (2007).

    CAS  Article  Google Scholar 

  46. 46

    Cho, M., Chung, S., Heo, S.D., Ku, J. & Ban, C. A simple fluorescent method for detecting mismatched DNAs using a MutS-fluorophore conjugate. Biosens. Bioelectron. 22, 1376–1381 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Rasnik, I., Myong, S., Cheng, W., Lohman, T.M. & Ha, T. DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. J. Mol. Biol. 336, 395–408 (2004).

    CAS  Article  Google Scholar 

  48. 48

    Joo, C. & Ha, T. Single-molecule FRET with total internal reflection microscopy. in Single-Molecule Techniques: A Laboratory Manual (eds. Selvin, P.R. & Ha, T.) 3–36 (Cold Spring Harbor Laboratory Press, 2008).

Download references

Acknowledgements

We thank J.-H. Park for helping with the FRET experiments. This work was supported by National Research Foundation of Korea grants funded by the Korean government (MEST) (no. 2008-0061211, no. 2009-351-C00118; C.J. postdoctoral fellowship), the Brain Korea 21 project, a POSTECH Basic Science Research Institute Grant (J.-B.L.), HRF-2008-314-C00218 (C.B.) and US National Institutes of Health grant CA067007 (R.F.).

Author information

Affiliations

Authors

Contributions

C.J., R.F. and J.-B.L. designed the experiments. C.B. and K.-M.S. contributed essential reagents. C.J. and W.-K.C. carried out single-molecule analysis. C.C. carried out bulk analysis. C.J., W.-K.C., T.-Y.Y., C.B., R.F. and J.-B.L. analyzed the data. C.J., J.-B.L. and R.F. wrote the manuscript.

Corresponding authors

Correspondence to Changill Ban or Richard Fishel or Jong-Bong Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1 and 2 (PDF 1998 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeong, C., Cho, WK., Song, KM. et al. MutS switches between two fundamentally distinct clamps during mismatch repair. Nat Struct Mol Biol 18, 379–385 (2011). https://doi.org/10.1038/nsmb.2009

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing