Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1

This article has been updated

Abstract

Tra2-β1 is a unique splicing factor as its single RNA recognition motif (RRM) is located between two RS (arginine-serine) domains. To understand how this protein recognizes its RNA target, we solved the structure of Tra2-β1 RRM in complex with RNA. The central 5′-AGAA-3′ motif is specifically recognized by residues from the β-sheet of the RRM and by residues from both extremities flanking the RRM. The structure suggests that RNA binding by Tra2-β1 induces positioning of the two RS domains relative to one another. By testing the effect of Tra2-β1 and RNA mutations on the splicing of SMN2 exon 7, we validated the importance of the RNA-protein contacts observed in the structure for the function of Tra2-β1 and determined the functional sequence of Tra2-β1 in SMN2 exon 7. Finally, we propose a model for the assembly of multiple RNA binding proteins on this exon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study of the interaction between Tra2-β1 RRM and the 5′-AAGAAC-3′ RNA by ITC and NMR.
Figure 2: Overview of the solution structure of Tra2-β1 RRM in complex with the 5′-AAGAAC-3′ RNA.
Figure 3: Effect of Tra2-β1 mutations on SMN2 exon 7 splicing.
Figure 4: Effect of nucleotide substitutions in the Tra2-β1 binding site on SMN2 exon 7 splicing.
Figure 5: Binding of Tra2-β1 RRM might induce the positioning of the two RS domains on SMN exon 7 or the recruitment of hnRNP G and SRp30c.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Change history

  • 25 March 2011

    In the version of this article initially published online, in Figure 2c, the label "A1" in the right-hand panel was displaced to the left, and in the Results, "Tra2-β1" was incorrectly written as "Tra2-b1" in the subheading "Tra2-β1 binding to SMN might change position of RS domains." The errors have been corrected for all versions of this article.

References

  1. Novoyatleva, T. et al. Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Hum. Mol. Genet. 17, 52–70 (2008).

    Article  CAS  Google Scholar 

  2. Dauwalder, B., Amaya-Manzanares, F. & Mattox, W. A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proc. Natl. Acad. Sci. USA 93, 9004–9009 (1996).

    Article  CAS  Google Scholar 

  3. Nayler, O., Cap, C. & Stamm, S. Human transformer-2-beta gene (SFRS10): complete nucleotide sequence, chromosomal localization, and generation of a tissue-specific isoform. Genomics 53, 191–202 (1998).

    Article  CAS  Google Scholar 

  4. Daoud, R., Da Penha Berzaghi, M., Siedler, F., Hubener, M. & Stamm, S. Activity-dependent regulation of alternative splicing patterns in the rat brain. Eur. J. Neurosci. 11, 788–802 (1999).

    Article  CAS  Google Scholar 

  5. Beil, B., Screaton, G. & Stamm, S. Molecular cloning of htra2-beta-1 and htra2-beta-2, two human homologs of tra-2 generated by alternative splicing. DNA Cell Biol. 16, 679–690 (1997).

    Article  CAS  Google Scholar 

  6. Hertel, K.J. & Graveley, B.R. RS domains contact the pre-mRNA throughout spliceosome assembly. Trends Biochem. Sci. 30, 115–118 (2005).

    Article  CAS  Google Scholar 

  7. Shen, H. & Green, M.R. A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol. Cell 16, 363–373 (2004).

    Article  CAS  Google Scholar 

  8. Shen, H. & Green, M.R. RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev. 20, 1755–1765 (2006).

    Article  CAS  Google Scholar 

  9. Shen, H. & Green, M.R. RS domain-splicing signal interactions in splicing of U12-type and U2-type introns. Nat. Struct. Mol. Biol. 14, 597–603 (2007).

    Article  CAS  Google Scholar 

  10. Stoilov, P., Daoud, R., Nayler, O. & Stamm, S. Human tra2-beta1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA. Hum. Mol. Genet. 13, 509–524 (2004).

    Article  CAS  Google Scholar 

  11. Tacke, R., Tohyama, M., Ogawa, S. & Manley, J.L. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 93, 139–148 (1998).

    Article  CAS  Google Scholar 

  12. Tacke, R. & Manley, J.L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14, 3540–3551 (1995).

    Article  CAS  Google Scholar 

  13. Bourgeois, C.F., Lejeune, F. & Stevenin, J. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. Prog. Nucleic Acid Res. Mol. Biol. 78, 37–88 (2004).

    Article  CAS  Google Scholar 

  14. Burghes, A.H. & Beattie, C.E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat. Rev. Neurosci. 10, 597–609 (2009).

    Article  CAS  Google Scholar 

  15. Cartegni, L. & Krainer, A.R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384 (2002).

    Article  CAS  Google Scholar 

  16. Kashima, T. & Manley, J.L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34, 460–463 (2003).

    Article  CAS  Google Scholar 

  17. Hofmann, Y., Lorson, C.L., Stamm, S., Androphy, E.J. & Wirth, B. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl. Acad. Sci. USA 97, 9618–9623 (2000).

    Article  CAS  Google Scholar 

  18. Hofmann, Y. & Wirth, B. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-beta1. Hum. Mol. Genet. 11, 2037–2049 (2002).

    Article  CAS  Google Scholar 

  19. Young, P.J. et al. SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1. Hum. Mol. Genet. 11, 577–587 (2002).

    Article  CAS  Google Scholar 

  20. Singh, N.N., Androphy, E.J. & Singh, R.N. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. RNA 10, 1291–1305 (2004).

    Article  CAS  Google Scholar 

  21. Miyajima, H., Miyaso, H., Okumura, M., Kurisu, J. & Imaizumi, K. Identification of a cis-acting element for the regulation of SMN exon 7 splicing. J. Biol. Chem. 277, 23271–23277 (2002).

    Article  CAS  Google Scholar 

  22. Singh, N.N., Shishimorova, M., Cao, L.C., Gangwani, L. & Singh, R.N. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol. 6, 341–350 (2009).

    Article  CAS  Google Scholar 

  23. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  Google Scholar 

  24. Horne, C. & Young, P.J. Is RNA manipulation a viable therapy for spinal muscular atrophy? J. Neurol. Sci. 287, 27–31 (2009).

    Article  CAS  Google Scholar 

  25. Golovanov, A.P., Hautbergue, G.M., Wilson, S.A. & Lian, L.Y. A simple method for improving protein solubility and long-term stability. J. Am. Chem. Soc. 126, 8933–8939 (2004).

    Article  CAS  Google Scholar 

  26. Auweter, S.D., Oberstrass, F.C. & Allain, F.H. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res. 34, 4943–4959 (2006).

    Article  CAS  Google Scholar 

  27. Heinrich, B. et al. Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA. J. Biol. Chem. 284, 14303–14315 (2009).

    Article  CAS  Google Scholar 

  28. Simard, M.J. & Chabot, B. SRp30c is a repressor of 3′ splice site utilization. Mol. Cell. Biol. 22, 4001–4010 (2002).

    Article  CAS  Google Scholar 

  29. Shen, H., Kan, J.L. & Green, M.R. Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. Mol. Cell 13, 367–376 (2004).

    Article  CAS  Google Scholar 

  30. Skrisovska, L. et al. The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction. EMBO Rep. 8, 372–379 (2007).

    Article  CAS  Google Scholar 

  31. Cléry, A., Blatter, M. & Allain, F.H. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18, 290–298 (2008).

    Article  Google Scholar 

  32. Maris, C., Dominguez, C. & Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118–2131 (2005).

    Article  CAS  Google Scholar 

  33. Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835–845 (1999).

    Article  CAS  Google Scholar 

  34. Hargous, Y. et al. Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. EMBO J. 25, 5126–5137 (2006).

    Article  CAS  Google Scholar 

  35. Mazza, C., Segref, A., Mattaj, I.W. & Cusack, S. Large-scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap-binding complex. EMBO J. 21, 5548–5557 (2002).

    Article  CAS  Google Scholar 

  36. Tsuda, K. et al. Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3. Nucleic Acids Res. 37, 5151–5166 (2009).

    Article  CAS  Google Scholar 

  37. Ding, J. et al. Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev. 13, 1102–1115 (1999).

    Article  CAS  Google Scholar 

  38. Oberstrass, F.C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054–2057 (2005).

    Article  CAS  Google Scholar 

  39. Vitali, F. et al. Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J. 25, 150–162 (2006).

    Article  CAS  Google Scholar 

  40. Irimura, S. et al. HnRNP C1/C2 may regulate exon 7 splicing in the spinal muscular atrophy gene SMN1. Kobe J. Med. Sci. 54, E227–E236 (2009).

    PubMed  Google Scholar 

  41. Lynch, K.W. & Maniatis, T. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 9, 284–293 (1995).

    Article  CAS  Google Scholar 

  42. Prior, T.W. et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 85, 408–413 (2009).

    Article  CAS  Google Scholar 

  43. Vezain, M. et al. A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy. Hum. Mutat. 31, E1110–E1125 (2010).

    Article  Google Scholar 

  44. Lorson, C.L., Hahnen, E., Androphy, E.J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  Google Scholar 

  45. Monani, U.R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    Article  CAS  Google Scholar 

  46. D'Souza, I. et al. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc. Natl. Acad. Sci. USA 96, 5598–5603 (1999).

    Article  CAS  Google Scholar 

  47. Rizzu, P. et al. High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am. J. Hum. Genet. 64, 414–421 (1999).

    Article  CAS  Google Scholar 

  48. Jiang, Z. et al. Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2 beta. J. Biol. Chem. 278, 18997–19007 (2003).

    Article  CAS  Google Scholar 

  49. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  50. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. NMR Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  51. Peterson, R.D., Theimer, C.A., Wu, H. & Feigon, J. New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J. Biomol. NMR 28, 59–67 (2004).

    Article  CAS  Google Scholar 

  52. Wenter, P., Reymond, L., Auweter, S.D., Allain, F.H. & Pitsch, S. Short, synthetic and selectively 13C-labeled RNA sequences for the NMR structure determination of protein-RNA complexes. Nucleic Acids Res. 34, e79 (2006).

    Article  Google Scholar 

  53. Lee, W., Revington, M.J., Arrowsmith, C. & Kay, L.E. A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett. 350, 87–90 (1994).

    Article  CAS  Google Scholar 

  54. Herrmann, T., Guntert, P. & Wuthrich, K. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189 (2002).

    Article  CAS  Google Scholar 

  55. Herrmann, T., Guntert, P. & Wuthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).

    Article  CAS  Google Scholar 

  56. Case, D.A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  CAS  Google Scholar 

  57. Auweter, S.D. et al. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J. 25, 163–173 (2006).

    Article  CAS  Google Scholar 

  58. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  59. Hartmann, A.M., Nayler, O., Schwaiger, F.W., Obermeier, A. & Stamm, S. The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn). Mol. Biol. Cell 10, 3909–3926 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Stevenin and D. Watt for reading the manuscript; J. Hall and M. Zimmermann for labeled RNA; the SNF-NCCR Structural Biology and EURASNET for financial support to F.H.-T.A.; the Muscular Dystrophy Association for support of S.S. and the European Molecular Biology Organization for a postdoctoral fellowship to A.C.

Author information

Authors and Affiliations

Authors

Contributions

F.H.-T.A. and S.S. designed the project; A.C. prepared protein and RNA samples for structural studies; A.C., C.D. and F.H.-T.A. analyzed NMR data; A.C. and C.D. did structure calculations; S.J., N.B. and A.C. did in vivo splicing assays; A.C. and C.D. did ITC measurements; N.B. conducted the coimmunoprecipitation experiments; all authors discussed the results and wrote and approved the manuscript.

Corresponding author

Correspondence to Frédéric H-T Allain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 2214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cléry, A., Jayne, S., Benderska, N. et al. Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1. Nat Struct Mol Biol 18, 443–450 (2011). https://doi.org/10.1038/nsmb.2001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing