Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery

Abstract

Eukaryotic transcriptional repressors function by recruiting large coregulatory complexes that target histone deacetylase enzymes to gene promoters and enhancers. Transcriptional repression complexes, assembled by the corepressor NCoR and its homolog SMRT, are crucial in many processes, including development and metabolic physiology. The core repression complex involves the recruitment of three proteins, HDAC3, GPS2 and TBL1, to a highly conserved repression domain within SMRT and NCoR. We have used structural and functional approaches to gain insight into the architecture and biological role of this complex. We report the crystal structure of the tetrameric oligomerization domain of TBL1, which interacts with both SMRT and GPS2, and the NMR structure of the interface complex between GPS2 and SMRT. These structures, together with computational docking, mutagenesis and functional assays, reveal the assembly mechanism and stoichiometry of the corepressor complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping the interactions among TBL1, SMRT and GPS2.
Figure 2: NMR solution structure of the antiparallel coiled coil formed by the interaction of SMRT and GPS2.
Figure 3: Crystal structure of the TBL1-NTD tetramer.
Figure 4: Binding of SMRT and GSP2 to TBL1.
Figure 5: Identification of a common TBL1 interaction motif in SMRT and GPS2.
Figure 6: Interaction of a GPS2-SMRT chimera with TBL1 in vitro and in vivo.
Figure 7: In silico docking of the SMRT and GPS2 peptides with TBL1, and assembly of the core SMRT or NCoR repression complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lazar, M.A. Nuclear receptor corepressors. Nucl. Recept. Signal. 1, e001 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmad, K.F. et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol. Cell 12, 1551–1564 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Gelmetti, V. et al. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell. Biol. 18, 7185–7191 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jayne, S., Zwartjes, C.G., van Schaik, F.M. & Timmers, H.T. Involvement of the SMRT/NCoR-HDAC3 complex in transcriptional repression by the CNOT2 subunit of the human Ccr4-Not complex. Biochem. J. 398, 461–467 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kao, H.Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, X., Li, H., Park, E.J. & Chen, J.D. SMRTE inhibits MEF2C transcriptional activation by targeting HDAC4 and 5 to nuclear domains. J. Biol. Chem. 276, 24177–24185 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Yoon, H.G., Chan, D.W., Reynolds, A.B., Qin, J. & Wong, J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell 12, 723–734 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lutterbach, B. et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell. Biol. 18, 7176–7184 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Jepsen, K. et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450, 415–419 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, G.X. et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARα and NPM-RARα. Proc. Natl. Acad. Sci. USA 96, 6318–6323 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong, S.H., David, G., Wong, C.W., Dejean, A. & Privalsky, M.L. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor α (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 94, 9028–9033 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Melnick, A.M. et al. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol. Cell. Biol. 20, 2075–2086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guenther, M.G. et al. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev. 14, 1048–1057 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, J. et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 19, 4342–4350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wen, Y.D. et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl. Acad. Sci. USA 97, 7202–7207 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heinzel, T. et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ishizuka, T. & Lazar, M.A. The nuclear receptor corepressor deacetylase activating domain is essential for repression by thyroid hormone receptor. Mol. Endocrinol. 19, 1443–1451 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Yin, L. et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786–1789 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Guenther, M.G., Barak, O. & Lazar, M.A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol. 21, 6091–6101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoon, H.G. et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 22, 1336–1346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, J., Kalkum, M., Chait, B.T. & Roeder, R.G. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell 9, 611–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Hörlein, A.J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    Article  PubMed  Google Scholar 

  27. Peng, Y.C., Breiding, D.E., Sverdrup, F., Richard, J. & Androphy, E.J. AMF-1/Gps2 binds p300 and enhances its interaction with papillomavirus E2 proteins. J. Virol. 74, 5872–5879 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng, Y.C. et al. AMF1 (GPS2) modulates p53 transactivation. Mol. Cell. Biol. 21, 5913–5924 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jakobsson, T. et al. GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1 locus. Mol. Cell 34, 510–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, D., Harry, G.J., Blackshear, P.J. & Zeldin, D.C. G-protein pathway suppressor 2 (GPS2) interacts with the regulatory factor X4 variant 3 (RFX4_v3) and functions as a transcriptional co-activator. J. Biol. Chem. 283, 8580–8590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Degenhardt, Y.Y. & Silverstein, S.J. Gps2, a protein partner for human papillomavirus E6 proteins. J. Virol. 75, 151–160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, T.H., Yi, W., Griswold, M.D., Zhu, F. & Her, C. Formation of hMSH4-hMSH5 heterocomplex is a prerequisite for subsequent GPS2 recruitment. DNA Repair (Amst.) 5, 32–42 (2006).

    Article  CAS  Google Scholar 

  33. Yan, H.T. et al. Molecular analysis of TBL1Y, a Y-linked homologue of TBL1X related with X-linked late-onset sensorineural deafness. J. Hum. Genet. 50, 175–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Perissi, V., Aggarwal, A., Glass, C.K., Rose, D.W. & Rosenfeld, M.G. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116, 511–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Hartman, H.B., Yu, J., Alenghat, T., Ishizuka, T. & Lazar, M.A. The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3. EMBO Rep. 6, 445–451 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi, H.K. et al. Function of multiple Lis-Homology domain/WD-40 repeat-containing proteins in feed-forward transcriptional repression by silencing mediator for retinoic and thyroid receptor/nuclear receptor corepressor complexes. Mol. Endocrinol. 22, 1093–1104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oakley, M.G. & Hollenbeck, J.J. The design of antiparallel coiled coils. Curr. Opin. Struct. Biol. 11, 450–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, M.H. et al. The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure 12, 987–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Mikolajka, A. et al. Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. J. Mol. Biol. 359, 863–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Dominguez, C., Boelens, R. & Bonvin, A.M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Codina, A. et al. Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor corepressors. Proc. Natl. Acad. Sci. USA 102, 6009–6014 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, J., Lin, Q., Wang, W., Wade, P. & Wong, J. Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev. 16, 687–692 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, J. & Wang, C.Y. TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat. Cell Biol. 10, 160–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Cerna, D. & Wilson, D.K. The structure of Sif2p, a WD repeat protein functioning in the SET3 corepressor complex. J. Mol. Biol. 351, 923–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, G. & Courey, A.J. Groucho/TLE family proteins and transcriptional repression. Gene 249, 1–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Varanasi, U.S., Klis, M., Mikesell, P.B. & Trumbly, R.J. The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol. Cell. Biol. 16, 6707–6714 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gerlitz, G., Darhin, E., Giorgio, G., Franco, B. & Reiner, O. Novel functional features of the Lis-H domain: role in protein dimerization, half-life and cellular localization. Cell Cycle 4, 1632–1640 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Ghisletti, S. et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 23, 681–693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hong, W. et al. Bag-1M inhibits the transactivation of the glucocorticoid receptor via recruitment of corepressors. FEBS Lett. 583, 2451–2456 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Tomita, A., Buchholz, D.R. & Shi, Y.B. Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol. Cell. Biol. 24, 3337–3346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Varlakhanova, N., Hahm, J.B. & Privalsky, M.L. Regulation of SMRT corepressor dimerization and composition by MAP kinase phosphorylation. Mol. Cell. Endocrinol. published online, doi:10.1016/j.mce.2010.10.010 (19 October 2010).

  52. Couture, J.F., Collazo, E. & Trievel, R.C. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat. Struct. Mol. Biol. 13, 698–703 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Song, J.J., Garlick, J.D. & Kingston, R.E. Structural basis of histone H4 recognition by p55. Genes Dev. 22, 1313–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D 62, 48–57 (2006).

    Article  PubMed  Google Scholar 

  56. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  57. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  60. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Moody, P. Elliot and the beamline staff at DIAMOND and the European Synchrotron Radiation Facility for help with data collection. This work was supported by the Wellcome Trust (085408) and the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

The contributions of J.O., L.F. and P.J.W. were crucial to the final manuscript and these authors should be considered co–first authors. J.O. (assisted by J.T.G.) performed most of the protein cloning, expression, purification and interaction mapping, although important preliminary experiments were performed by B.C.K. J.O. prepared the GPS2–SMRT complex for NMR structure determination, which was carried out by J.-C.Y. and D.N. Crystallizations were performed primarily by J.O., with some later trials by J.A.G. and L.F. Crystal structures were determined by L.F., J.O. and J.W.R.S. The interaction motifs in GPS2 and SMRT were identified by J.W.R.S. and tested in pull-down experiments by J.O. Fluorescence polarization, coimmunoprecipitation and cotransfection-purification assays were performed by P.J.W. The two-hybrid assays, gel filtrations and NMR comparisons of wild-type and mutant TBL1 were performed by P.J.W., Z.C. and B.T.G. In silico docking experiments were performed by T.K. The laboratories of L.N. and D.N. provided experimental expertise for transfection and NMR studies, respectively. J.W.R.S. planned and supervised the project and prepared the manuscript with assistance from the other authors.

Corresponding author

Correspondence to John W R Schwabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–3 and Supplementary Methods (PDF 3716 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberoi, J., Fairall, L., Watson, P. et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 18, 177–184 (2011). https://doi.org/10.1038/nsmb.1983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing