Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases

Abstract

The proteins that form the bacterial flagellum are translocated to its distal end through the central channel of the growing flagellum by the flagellar-specific protein export apparatus, a family of the type III protein secretion system. FliI and FliJ are soluble components of this apparatus. FliI is an ATPase that has extensive structural similarity to the α and β subunits of FoF1-ATP synthase. FliJ is essential for export, but its function remains obscure. Here we show that the structure of FliJ derived from Salmonella enterica serovar Typhimurium is remarkably similar to that of the two-stranded α-helical coiled-coil part of the γ subunit of FoF1-ATP synthase and that FliJ promotes the formation of FliI hexamer rings by binding to the center of the ring. These results suggest that the type III protein export system and F- and V-type ATPases share a similar mechanism and an evolutionary relationship.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of FliJ.
Figure 2: Structural similarity between FliJ and the γ subunit of F1-ATPase.
Figure 3: Effect of FliJ on the formation of FliI rings.
Figure 4: Electron micrograph of the FliI–FliJ complex.
Figure 5: Comparison of the FliI and FliJ-FliI ring complexes.
Figure 6: Structure-based sequence alignment of FliI and the α and β subunits of F1-ATPase and pulldown assay to identify the FliI region that interacts with FliJ.
Figure 7: Schematic diagram showing a plausible model of the FliH–FliI–FliJ complex and its relative position and orientation to the export gate.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Minamino, T., Imada, K. & Namba, K. Mechanisms of type III protein export for bacterial flagellar assembly. Mol. Biosyst. 4, 1105–1115 (2008).

    Article  CAS  Google Scholar 

  2. Macnab, R.M. How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100 (2003).

    Article  CAS  Google Scholar 

  3. Minamino, T. & Macnab, R.M. Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181, 1388–1394 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Minamino, T. & Namba, K. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451, 485–488 (2008).

    Article  CAS  Google Scholar 

  5. Paul, K., Erhardt, M., Hirano, T., Blair, D.F. & Hughes, K.T. Energy source of flagellar type III secretion. Nature 451, 489–492 (2008).

    Article  CAS  Google Scholar 

  6. Minamino, T., Yoshimura, S.D.J., Morimoto, Y.V., González-Pedrajo, B., Kami-ike, N. & Namba, K. Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus. Mol. Microbiol. 74, 1471–1483 (2009).

    Article  CAS  Google Scholar 

  7. Vogler, A.P., Homma, M., Irikura, V.M. & Macnab, R.M. Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits. J. Bacteriol. 173, 3564–3572 (1991).

    Article  CAS  Google Scholar 

  8. Fan, F. & Macnab, R.M. Enzymatic characterization of FliI: an ATPase involved in flagellar assembly in Salmonella typhimurium. J. Biol. Chem. 271, 31981–31988 (1996).

    Article  CAS  Google Scholar 

  9. Imada, K., Minamino, T., Tahara, A. & Namba, K. Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc. Natl. Acad. Sci. USA 104, 485–490 (2007).

    Article  CAS  Google Scholar 

  10. Claret, L., Susannah, C.R., Higgins, M. & Hughes, C. Oligomerisation and activation of the FliI ATPase central to bacterial flagellum assembly. Mol. Microbiol. 48, 1349–1355 (2003).

    Article  CAS  Google Scholar 

  11. Minamino, T. et al. Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J. Mol. Biol. 360, 510–519 (2006).

    Article  CAS  Google Scholar 

  12. Minamino, T. & Macnab, R.M. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol. Microbiol. 37, 1494–1503 (2000).

    Article  CAS  Google Scholar 

  13. Lane, M.C., O'Toole, P.W. & Moore, S.A. Molecular basis of the interaction between the flagellar export proteins FliH and FliI from Helicobacter pylori. J. Biol. Chem. 281, 508–517 (2006).

    Article  CAS  Google Scholar 

  14. Minamino, T., González-Pedrajo, B., Kihara, M., Namba, K. & Macnab, R.M. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator FliH. J. Bacteriol. 185, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  15. Minamino, T., Chu, R., Yamaguchi, S. & Macnab, R.M. Role of FliJ in flagellar protein export in Salmonella. J. Bacteriol. 182, 4207–4215 (2000).

    Article  CAS  Google Scholar 

  16. Minamino, T. & Macnab, R.M. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol. Microbiol. 35, 1052–1064 (2000).

    Article  CAS  Google Scholar 

  17. Fraser, G.M., González-Pedrajo, B., Tame, J.R. & Macnab, R.M. Interactions of FliJ with the Salmonella type III flagellar export apparatus. J. Bacteriol. 185, 5546–5554 (2003).

    Article  CAS  Google Scholar 

  18. González-Pedrajo, B., Minamino, T., Kihara, M. & Namba, K. Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Mol. Microbiol. 60, 984–998 (2006).

    Article  Google Scholar 

  19. Evans, L.D., Stafford, G.P., Ahmed, S., Fraser, G.M. & Hughes, C. An escort mechanism for cycling of export chaperones during flagellum assembly. Proc. Natl. Acad. Sci. USA 103, 17474–17479 (2006).

    Article  CAS  Google Scholar 

  20. Imada, K., Minamino, T., Kinoshita, M., Furukawa, Y. & Namba, K. Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners. Proc. Natl. Acad. Sci. USA 107, 8812–8817 (2010).

    Article  CAS  Google Scholar 

  21. Bange, G. et al. FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system. Proc. Natl. Acad. Sci. USA 107, 11295–11300 (2010).

    Article  CAS  Google Scholar 

  22. Saijo-Hamano, Y. et al. Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Mol. Microbiol. 76, 260–268 (2010).

    Article  CAS  Google Scholar 

  23. Ibuki, T., Shimada, M., Minamino, T., Namba, K. & Imada, K. Crystallization and preliminary X-ray analysis of FliJ, a cytoplasmic component of the flagellar type III protein-export apparatus from Salmonella sp. Acta Crystallogr. F65, 47–50 (2009).

    Google Scholar 

  24. Holm, L., Kääriäinen, S., Rosenström, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 23, 2780–2781 (2008).

    Article  Google Scholar 

  25. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  26. Gibbons, C., Montgomery, M.G., Leslie, A.G. & Walker, J.E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat. Struct. Biol. 7, 1055–1061 (2000).

    Article  CAS  Google Scholar 

  27. Numoto, N., Hasegawa, Y., Takeda, K. & Miki, K. Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. EMBO Rep. 10, 1228–1234 (2009).

    Article  CAS  Google Scholar 

  28. Kazetani, K., Minamino, T., Miyata, T., Kato, T. & Namba, K. ATP-induced FliI hexamerization facilitates bacterial flagellar protein export. Biochem. Biophys. Res. Commun. 388, 323–327 (2009).

    Article  CAS  Google Scholar 

  29. Pallen, M.J., Bailey, C.M. & Beatson, S.A. Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Protein Sci. 15, 935–941 (2006).

    Article  CAS  Google Scholar 

  30. Yoshida, M., Muneyuki, E. & Hisabori, T. ATP synthase—a marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Biol. 2, 669–677 (2001).

    Article  CAS  Google Scholar 

  31. Noji, H., Yasuda, T., Yoshida, M. & Kinoshita, K. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  32. Zarivach, R., Vuckovic, M., Deng, W., Finlay, B.B. & Strynadka, N.C.J. Structural analysis of a prototypical ATPase from the type III secretion system. Nat. Struct. Mol. Biol. 14, 131–137 (2007).

    Article  CAS  Google Scholar 

  33. Lorenzini, E. et al. Structure and protein-protein interaction studies on Chlamydia trachomatis protein CT670 (YscO homolog). J. Bacteriol. 192, 2746–2756 (2010).

    Article  CAS  Google Scholar 

  34. Payne, P.L. & Straley, S.C. YscO of Yersinia pestis is a mobile core component of the Yop secretion system. J. Bacteriol. 180, 3882–3890 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stock, D., Leslie, A.G.W. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).

    Article  CAS  Google Scholar 

  36. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).

    Article  CAS  Google Scholar 

  37. Leslie, A.G.W. Joint CCP4 and ESFEACMB newsletter on protein. Protein Crystallogr 26, 27–33 (1992).

    Google Scholar 

  38. Collaborative Computational Project. Number 4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  39. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D55, 849–861 (1999).

    CAS  Google Scholar 

  40. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004).

    CAS  Google Scholar 

  41. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998).

    Google Scholar 

  42. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: Semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  43. Ludtke, S.J. & Chiu, W. Focal pair merging for contrast enhancement of single particles. J. Struct. Biol. 144, 73–78 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Shimada and K. Kazetani for technical assistance and N. Shimizu, M. Kawamoto and K. Hasegawa at SPring-8 for technical help in use of beamlines. T.I. is a research fellow of the Japan Society for the Promotion of Science. This work was supported in part by Grants-in-Aid for Scientific Research (18074006 to K.I., 22570161 to T. Minamino and 16087207 and 21227006 to K.N.) and the Targeted Proteins Research Program (TPRP) from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Contributions

T.I. prepared samples and carried out crystallization and X-ray structure analysis. K.I. helped and supervised T.I. in X-ray crystallography. T. Minamino prepared protein expression constructs and carried out pulldown assays. T.K. helped and supervised T.I. in cryo-EM image analysis. T. Miyata collected cryo-EM images. K.N. supervised the whole project. T.I., K.I., T. Minamino and K.N. wrote the paper based on discussions with T.K. and T. Miyata.

Corresponding authors

Correspondence to Katsumi Imada or Keiichi Namba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibuki, T., Imada, K., Minamino, T. et al. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol 18, 277–282 (2011). https://doi.org/10.1038/nsmb.1977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1977

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology