Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM

Abstract

Measles virus, a major cause of childhood morbidity and mortality worldwide, predominantly infects immune cells using signaling lymphocyte activation molecule (SLAM) as a cellular receptor. Here we present crystal structures of measles virus hemagglutinin (MV-H), the receptor-binding glycoprotein, in complex with SLAM. The MV-H head domain binds to a β-sheet of the membrane-distal ectodomain of SLAM using the side of its β-propeller fold. This is distinct from attachment proteins of other paramyxoviruses that bind receptors using the top of their β-propeller. The structure provides templates for antiviral drug design, an explanation for the effectiveness of the measles virus vaccine, and a model of the homophilic SLAM-SLAM interaction involved in immune modulations. Notably, the crystal structures obtained show two forms of the MV-H–SLAM tetrameric assembly (dimer of dimers), which may have implications for the mechanism of fusion triggering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the MV-H–SLAM complex.
Figure 2: Interaction between MV-H and SLAM.
Figure 3: MV-H tetramer.
Figure 4: Structural basis of effectiveness of measles virus vaccine and a model of measles virus–induced membrane fusion.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Bryce, J., Boschi-Pinto, C., Shibuya, K. & Black, R.E. WHO estimates of the causes of death in children. Lancet 365, 1147–1152 (2005).

    Article  PubMed  Google Scholar 

  2. Moss, W.J. & Griffin, D.E. Global measles elimination. Nat. Rev. Microbiol. 4, 900–908 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Griffin, D.E. in Fields Virology (eds. Knipe, D.M. et al.) 1551–1585 (Lippincott Williams & Wilkins, Philadelphia, 2007).

  4. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lamb, R.A. & Parks, G.D. in Fields Virology (eds. Knipe, D.M. et al.) 1449–1496 (Lippincott Williams & Wilkins, Philadelphia, 2007).

  6. Iorio, R.M. & Mahon, P.J. Paramyxoviruses: different receptors—different mechanisms of fusion. Trends Microbiol. 16, 135–137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, E.C., Popa, A., Chang, A., Masante, C. & Dutch, R.E. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. FEBS J. 276, 7217–7227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Connolly, S.A., Leser, G.P., Jardetzky, T.S. & Lamb, R.A. Bimolecular complementation of paramyxovirus fusion and hemagglutinin-neuraminidase proteins enhances fusion: implications for the mechanism of fusion triggering. J. Virol. 83, 10857–10868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Yanagi, Y., Takeda, M., Ohno, S. & Hashiguchi, T. Measles virus receptors. Curr. Top. Microbiol. Immunol. 329, 13–30 (2009).

    CAS  PubMed  Google Scholar 

  11. Cocks, B.G. et al. A novel receptor involved in T-cell activation. Nature 376, 260–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Schwartzberg, P.L., Mueller, K.L., Qi, H. & Cannons, J.L. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat. Rev. Immunol. 9, 39–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Mavaddat, N. et al. Signaling lymphocytic activation molecule (CDw150) Is homophilic but self-associates with very low affinity. J. Biol. Chem. 275, 28100–28109 (2000).

    CAS  PubMed  Google Scholar 

  15. Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dörig, R.E., Marcil, A., Chopra, A. & Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article  PubMed  Google Scholar 

  17. Manchester, M., Liszewski, M.K., Atkinson, J.P. & Oldstone, M.B. Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc. Natl. Acad. Sci. USA 91, 2161–2165 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeda, M. et al. A human lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism. J. Virol. 81, 12091–12096 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tahara, M. et al. Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J. Virol. 82, 4630–4637 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leonard, V.H. et al. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J. Clin. Invest. 118, 2448–2458 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashiguchi, T. et al. Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc. Natl. Acad. Sci. USA 104, 19535–19540 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colf, L.A., Juo, Z.S. & Garcia, K.C. Structure of the measles virus hemagglutinin. Nat. Struct. Mol. Biol. 14, 1227–1228 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Santiago, C., Celma, M.L., Stehle, T. & Casasnovas, J.M. Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat. Struct. Mol. Biol. 17, 124–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ono, N., Tatsuo, H., Tanaka, K., Minagawa, H. & Yanagi, Y. V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J. Virol. 75, 1594–1600 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evans, E.J. et al. Crystal structure and binding properties of the CD2 and CD244 (2B4)-binding protein, CD48. J. Biol. Chem. 281, 29309–29320 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Massé, N. et al. Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J. Virol. 78, 9051–9063 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vongpunsawad, S., Oezgun, N., Braun, W. & Cattaneo, R. Selectively receptor-blind measles viruses: Identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J. Virol. 78, 302–313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan, P. et al. Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure 13, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Bowden, T.A. et al. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat. Struct. Mol. Biol. 15, 567–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, K. et al. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc. Natl. Acad. Sci. USA 105, 9953–9958 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Varghese, J.N., Laver, W.G. & Colman, P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303, 35–40 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Burmeister, W.P., Ruigrok, R.W. & Cusack, S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 11, 49–56 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohno, S., Seki, F., Ono, N. & Yanagi, Y. Histidine at position 61 and its adjacent amino acid residues are critical for the ability of SLAM (CD150) to act as a cellular receptor for measles virus. J. Gen. Virol. 84, 2381–2388 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Velikovsky, C.A. et al. Structure of natural killer receptor 2B4 bound to CD48 reveals basis for heterophilic recognition in signaling lymphocyte activation molecule family. Immunity 27, 572–584 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zaitsev, V. et al. Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J. Virol. 78, 3733–3741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrence, M.C. et al. Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. J. Mol. Biol. 335, 1343–1357 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Navaratnarajah, C.K. et al. Dynamic interaction of the measles virus hemagglutinin with its receptor signaling lymphocytic activation molecule (SLAM, CD150). J. Biol. Chem. 283, 11763–11771 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, A., Sheshberadaran, H., Norrby, E. & Kovamees, J. Molecular characterization of epitopes on the measles virus hemagglutinin protein. Virology 192, 351–354 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Fournier, P. et al. Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fusion proteins protect against measles encephalitis. J. Gen. Virol. 78, 1295–1302 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Ertl, O.T., Wenz, D.C., Bouche, F.B., Berbers, G.A. & Muller, C.P. Immunodominant domains of the Measles virus hemagglutinin protein eliciting a neutralizing human B cell response. Arch. Virol. 148, 2195–2206 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Ruigrok, R.W. & Gerlier, D. Structure of the measles virus H glycoprotein sheds light on an efficient vaccine. Proc. Natl. Acad. Sci. USA 104, 20639–20640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bossart, K.N. et al. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J. Virol. 79, 6690–6702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan, P., Leser, G.P., Demeler, B., Lamb, R.A. & Jardetzky, T.S. Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein. Virology 378, 282–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Chothia, C. & Jones, E.Y. The molecular structure of cell adhesion molecules. Annu. Rev. Biochem. 66, 823–862 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Cao, E. et al. NTB-A receptor crystal structure: insights into homophilic interactions in the signaling lymphocytic activation molecule receptor family. Immunity 25, 559–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Paal, T. et al. Probing the spatial organization of measles virus fusion complexes. J. Virol. 83, 10480–10493 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Radecke, F. et al. Rescue of measles viruses from cloned DNA. EMBO J. 14, 5773–5784 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takeda, M. et al. Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J. Virol. 79, 14346–14354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adachi, H. et al. Application of a two-liquid system to sitting-drop vapour-diffusion protein crystallization. Acta Crystallogr. D Biol. Crystallogr. 59, 194–196 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff of Photon Factory (Tsukuba, Japan) and SPring8 (Hyogo, Japan) for technical help during data collection. We also thank M.A. Billeter (Institute of Molecular Biology, University of Zürich) for reagents, M. Takeda, I. Tanaka, K. Inaba, K. Mihara, T. Oka, H. Aramaki, K. Tokunaga, M. Kajikawa, K. Kuroki and K. Sasaki for discussion and E.O. Saphire for reviewing the manuscript. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Ministry of Health, Labor and Welfare of Japan. T.H. is supported by the Japan Society for the Promotion of Science Research Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

T.H., K.M. and Y.Y. designed the research; T.H. and J.K. prepared and crystallized MV-H–SLAM complexes; T.H. and M.K. carried out binding, BN-PAGE and measles virus infection assays; T.H., T.O., N.M. and K.M. determined the crystal structures; T.H., K.M. and Y.Y. wrote the paper.

Corresponding authors

Correspondence to Katsumi Maenaka or Yusuke Yanagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 7278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashiguchi, T., Ose, T., Kubota, M. et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol 18, 135–141 (2011). https://doi.org/10.1038/nsmb.1969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing