Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mixed Hsp90–cochaperone complexes are important for the progression of the reaction cycle

Subjects

Abstract

The chaperone cycle of heat shock protein-90 (Hsp90) involves progression through defined complexes with different cochaperones. It is still enigmatic how the exchange of cochaperones is regulated. The first cochaperone entering the cycle is the Hsp90 ATPase inhibitor Sti1 (Hop in human), which later is replaced by a prolyl isomerase (PPIase) and p23. We found, unexpectedly, that one Sti1 molecule is sufficient to completely inhibit the ATPase of the Hsp90 dimer. Upon addition of a PPIase cochaperone to the Hsp90–Sti1 complex, an asymmetric ternary complex is preferentially formed. This PPIase–Hsp90–Sti1 intermediate is important for the progression of the cycle. To expel the bound Sti1, the concerted action of ATP and p23 is required. This mechanism, which is strictly conserved between the yeast and human Hsp90 systems, presents an example of how, in a cyclic process, directionality of assembly and disassembly of protein complexes can be achieved.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Interaction of Sti1 and Cpr6 with Hsp90.
Figure 2: aUC analysis of the Sti1-Hsp90-Cpr6 interaction.
Figure 3: Regulation of the asymmetric complex by nucleotides and p23.
Figure 4: Asymmetric complex formation in the human HSP90 system.
Figure 5: Model of the Hsp90 cochaperone cycle.

References

  1. Borkovich, K.A., Farrelly, F.W., Finkelstein, D.B., Taulien, J. & Lindquist, S. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9, 3919–3930 (1989).

    CAS  Article  Google Scholar 

  2. Dezwaan, D.C. & Freeman, B.C. HSP90: the Rosetta stone for cellular protein dynamics? Cell Cycle 7, 1006–1012 (2008).

    CAS  Article  Google Scholar 

  3. Taipale, M., Jarosz, D.F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010).

    CAS  Article  Google Scholar 

  4. Young, J.C., Moarefi, I. & Hartl, F.U. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol. 154, 267–273 (2001).

    CAS  Article  Google Scholar 

  5. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. & Nardai, G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129–168 (1998).

    CAS  Article  Google Scholar 

  6. Welch, W.J. & Feramisco, J.R. Purification of the major mammalian heat shock proteins. J. Biol. Chem. 257, 14949–14959 (1982).

    CAS  PubMed  Google Scholar 

  7. Geller, R., Vignuzzi, M., Andino, R. & Frydman, J. Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev. 21, 195–205 (2007).

    CAS  Article  Google Scholar 

  8. Mayer, M.P. & Bukau, B. Molecular chaperones: the busy life of Hsp90. Curr. Biol. 9, R322–R325 (1999).

    CAS  Article  Google Scholar 

  9. McClellan, A.J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121–135 (2007).

    CAS  Article  Google Scholar 

  10. Pratt, W.B. & Toft, D.O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 228, 111–133 (2003).

    CAS  Article  Google Scholar 

  11. Cunningham, C.N., Krukenberg, K.A. & Agard, D.A. Intra- and intermonomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90. J. Biol. Chem. 283, 21170–21178 (2008).

    CAS  Article  Google Scholar 

  12. Graf, C., Stankiewicz, M., Kramer, G. & Mayer, M.P. Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO J. 28, 602–613 (2009).

    CAS  Article  Google Scholar 

  13. Phillips, J.J. et al. Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs. J. Mol. Biol. 372, 1189–1203 (2007).

    CAS  Article  Google Scholar 

  14. Shiau, A.K., Harris, S.F., Southworth, D.R. & Agard, D.A. Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329–340 (2006).

    CAS  Article  Google Scholar 

  15. Picard, D. Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci. 59, 1640–1648 (2002).

    CAS  Article  Google Scholar 

  16. Pratt, W.B. & Toft, D.O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).

    CAS  Google Scholar 

  17. Wandinger, S.K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J. Biol. Chem. 283, 18473–18477 (2008).

    CAS  Article  Google Scholar 

  18. Cox, M.B. et al. FK506-binding protein 52 phosphorylation: a potential mechanism for regulating steroid hormone receptor activity. Mol. Endocrinol. 21, 2956–2967 (2007).

    CAS  Article  Google Scholar 

  19. Johnson, J.L. & Toft, D.O. A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J. Biol. Chem. 269, 24989–24993 (1994).

    CAS  PubMed  Google Scholar 

  20. Mayr, C., Richter, K., Lilie, H. & Buchner, J. Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties. J. Biol. Chem. 275, 34140–34146 (2000).

    CAS  Article  Google Scholar 

  21. Pirkl, F. & Buchner, J. Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J. Mol. Biol. 308, 795–806 (2001).

    CAS  Article  Google Scholar 

  22. Riggs, D.L. et al. Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling. Mol. Cell. Biol. 27, 8658–8669 (2007).

    CAS  Article  Google Scholar 

  23. Schiene, C. & Fischer, G. Enzymes that catalyse the restructuring of proteins. Curr. Opin. Struct. Biol. 10, 40–45 (2000).

    CAS  Article  Google Scholar 

  24. D'Andrea, L.D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).

    CAS  Article  Google Scholar 

  25. Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210 (2000).

    CAS  Article  Google Scholar 

  26. Chen, S., Sullivan, W.P., Toft, D.O. & Smith, D.F. Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3, 118–129 (1998).

    CAS  Article  Google Scholar 

  27. Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348, 166–168 (1990).

    CAS  Article  Google Scholar 

  28. Smith, D.F., Stensgard, B.A., Welch, W.J. & Toft, D.O. Assembly of progesterone receptor with heat shock proteins and receptor activation are ATP mediated events. J. Biol. Chem. 267, 1350–1356 (1992).

    CAS  PubMed  Google Scholar 

  29. Cheung-Flynn, J. et al. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol. Endocrinol. 19, 1654–1666 (2005).

    CAS  Article  Google Scholar 

  30. Johnson, J.L., Beito, T.G., Krco, C.J. & Toft, D.O. Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol. Cell. Biol. 14, 1956–1963 (1994).

    CAS  Article  Google Scholar 

  31. Smith, D.F. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol. Endocrinol. 7, 1418–1429 (1993).

    CAS  Google Scholar 

  32. Chen, S. & Smith, D.F. Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J. Biol. Chem. 273, 35194–35200 (1998).

    CAS  Article  Google Scholar 

  33. Forafonov, F. et al. p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol. Cell. Biol. 28, 3446–3456 (2008).

    CAS  Article  Google Scholar 

  34. Freeman, B.C., Felts, S.J., Toft, D.O. & Yamamoto, K.R. The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes Dev. 14, 422–434 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, J.L. & Toft, D.O. Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol. Endocrinol. 9, 670–678 (1995).

    CAS  PubMed  Google Scholar 

  36. McLaughlin, S.H. et al. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J. Mol. Biol. 356, 746–758 (2006).

    CAS  Article  Google Scholar 

  37. Prodromou, C. et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J. 18, 754–762 (1999).

    CAS  Article  Google Scholar 

  38. Richter, K., Muschler, P., Hainzl, O., Reinstein, J. & Buchner, J. Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J. Biol. Chem. 278, 10328–10333 (2003).

    CAS  Article  Google Scholar 

  39. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    CAS  Article  Google Scholar 

  40. Johnson, J.L., Halas, A. & Flom, G. Nucleotide-dependent interaction of Saccharomyces cerevisiae Hsp90 with the cochaperone proteins Sti1, Cpr6, and Sba1. Mol. Cell. Biol. 27, 768–776 (2007).

    CAS  Article  Google Scholar 

  41. Hessling, M., Richter, K. & Buchner, J. Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat. Struct. Mol. Biol. 16, 287–293 (2009).

    CAS  Article  Google Scholar 

  42. Yi, F., Doudevski, I. & Regan, L. HOP is a monomer: investigation of the oligomeric state of the co-chaperone HOP. Protein Sci. 19, 19–25 (2010).

    CAS  PubMed  Google Scholar 

  43. Kroe, R.R. & Laue, T.M. NUTS and BOLTS: applications of fluorescence-detected sedimentation. Anal. Biochem. 390, 1–13 (2009).

    CAS  Article  Google Scholar 

  44. Demeler, B. Methods for the design and analysis of sedimentation velocity and sedimentation equilibrium experiments with proteins. Curr. Protoc. Protein Sci. 60, 7.13.1–7.13.24 (2010).

    Article  Google Scholar 

  45. Flom, G., Weekes, J., Williams, J.J. & Johnson, J.L. Effect of mutation of the tetratricopeptide repeat and asparatate-proline 2 domains of Sti1 on Hsp90 signaling and interaction in Saccharomyces cerevisiae. Genetics 172, 41–51 (2006).

    CAS  Article  Google Scholar 

  46. Chadli, A. et al. Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. Proc. Natl. Acad. Sci. USA 97, 12524–12529 (2000).

    CAS  Article  Google Scholar 

  47. Grenert, J.P., Johnson, B.D. & Toft, D.O. The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J. Biol. Chem. 274, 17525–17533 (1999).

    CAS  Article  Google Scholar 

  48. Koulov, A.V. et al. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell 21, 871–884 (2010).

    CAS  Article  Google Scholar 

  49. Retzlaff, M. et al. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol. Cell 37, 344–354 (2010).

    CAS  Article  Google Scholar 

  50. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    CAS  Article  Google Scholar 

  51. Chang, H.C., Nathan, D.F. & Lindquist, S. In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol. Cell. Biol. 17, 318–325 (1997).

    CAS  Article  Google Scholar 

  52. Owens-Grillo, J.K. et al. A model of protein targeting mediated by immunophilins and other proteins that bind to hsp90 via tetratricopeptide repeat domains. J. Biol. Chem. 271, 13468–13475 (1996).

    CAS  Article  Google Scholar 

  53. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    CAS  Article  Google Scholar 

  54. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    CAS  Article  Google Scholar 

  55. Jakob, U. et al. Structural organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations on structure and function. J. Biol. Chem. 270, 14412–14419 (1995).

    CAS  Article  Google Scholar 

  56. Richter, K., Walter, S. & Buchner, J. The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J. Mol. Biol. 342, 1403–1413 (2004).

    CAS  Article  Google Scholar 

  57. Ali, J.A., Jackson, A.P., Howells, A.J. & Maxwell, A. The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry 32, 2717–2724 (1993).

    CAS  Article  Google Scholar 

  58. Richter, K., Muschler, P., Hainzl, O. & Buchner, J. Coordinated ATP hydrolysis by the Hsp90 dimer. J. Biol. Chem. 276, 33689–33696 (2001).

    CAS  Article  Google Scholar 

  59. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  Article  Google Scholar 

  60. Stafford, W.F. III. Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal. Biochem. 203, 295–301 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Kazlauskas (Karolinska Institute) for the AIP cDNA template, A. Schmid (Technische Universität München) for providing the Sti1 mutant R341E, and Y. Le and J. Winter (Technische Universität München) for the gift of YjiE. J.B. and K.R. were supported by the Deutsche Forschungsgemeinschaft (grants SFB594 A2 and RI1873/1-1, respectively) and by the Fonds der chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed, performed and analyzed experiments and wrote the first draft of the paper. K.R. was responsible for aUC and data analysis and contributed to writing the manuscript. J.B. designed and supervised experiments and wrote the manuscript.

Corresponding authors

Correspondence to Klaus Richter or Johannes Buchner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 1120 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, J., Richter, K. & Buchner, J. Mixed Hsp90–cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol 18, 61–66 (2011). https://doi.org/10.1038/nsmb.1965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1965

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing