Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1

Abstract

The male-specific lethal (MSL) complex is required for dosage compensation in Drosophila melanogaster, and analogous complexes exist in mammals. We report structures of binary complexes of mammalian MSL3 and the histone acetyltransferase (HAT) MOF with consecutive segments of MSL1. MSL1 interacts with MSL3 as an extended chain forming an extensive hydrophobic interface, whereas the MSL1-MOF interface involves electrostatic interactions between the HAT domain and a long helix of MSL1. This structure provides insights into the catalytic mechanism of MOF and enables us to show analogous interactions of MOF with NSL1. In Drosophila, selective disruption of Msl1 interactions with Msl3 or Mof severely affects Msl1 targeting to the body of dosage-compensated genes and several high-affinity sites, without affecting promoter binding. We propose that Msl1 acts as a scaffold for MSL complex assembly to achieve specific targeting to the X chromosome.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crystal structures of the MSL1–MSL3 and MSL1–MOF subcomplexes.
Figure 2: Structure of the MSL1–MOF complex.
Figure 3: Structure of the MSL1–MSL3 complex.
Figure 4: Acetylation activity of the MSL subcomplexes.
Figure 5: Mutagenesis of the MSL1 and NSL1 residues involved in MOF and MSL3 binding.
Figure 6: Drosophila Msl3 and Mof are required for efficient targeting of Msl1.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. 1

    Straub, T. & Becker, P.B. Dosage compensation: the beginning and end of generalization. Nat. Rev. Genet. 8, 47–57 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Heard, E. & Disteche, C.M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848–1867 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Mendjan, S. & Akhtar, A. The right dose for every sex. Chromosoma 116, 95–106 (2007).

    Article  Google Scholar 

  4. 4

    Gelbart, M.E. & Kuroda, M.I. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136, 1399–1410 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Smith, E.R. et al. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol. Cell. Biol. 25, 9175–9188 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Marín, I. Evolution of chromatin-remodeling complexes: comparative genomics reveals the ancient origin of “novel” compensasome genes. J. Mol. Evol. 56, 527–539 (2003).

    Article  Google Scholar 

  7. 7

    Mendjan, S. et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21, 811–823 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Taipale, M. et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol. Cell. Biol. 25, 6798–6810 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Alekseyenko, A.A. et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134, 599–609 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Smith, E.R. et al. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell. Biol. 20, 312–318 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Akhtar, A. & Becker, P.B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell 5, 367–375 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A. & Lucchesi, J.C. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16, 2054–2060 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Scott, M.J., Pan, L.L., Cleland, S.B., Knox, A.L. & Heinrich, J. MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J. 19, 144–155 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Morales, V. et al. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J. 23, 2258–2268 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Morales, V., Regnard, C., Izzo, A., Vetter, I. & Becker, P.B. The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex. Mol. Cell. Biol. 25, 5947–5954 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Sural, T.H. et al. The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster X chromosome. Nat. Struct. Mol. Biol. 15, 1318–1325 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Akhtar, A., Zink, D. & Becker, P.B. Chromodomains are protein-RNA interaction modules. Nature 407, 405–409 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Li, X., Wu, L., Corsa, C.A., Kunkel, S. & Dou, Y. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol. Cell 36, 290–301 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Raja, S.J. et al. The nonspecific lethal complex is a transcriptional regulator in Drosophila. Mol. Cell 38, 827–841 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Yan, Y., Barlev, N.A., Haley, R.H., Berger, S.L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6, 1195–1205 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Rojas, J.R. et al. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401, 93–98 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Wang, L., Tang, Y., Cole, P.A. & Marmorstein, R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr. Opin. Struct. Biol. 18, 741–747 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Yan, Y., Harper, S., Speicher, D.W. & Marmorstein, R. The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acetylated intermediate. Nat. Struct. Biol. 9, 862–869 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Berndsen, C.E., Albaugh, B.N., Tan, S. & Denu, J.M. Catalytic mechanism of a MYST family histone acetyltransferase. Biochemistry 46, 623–629 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Burke, T.W., Cook, J.G., Asano, M. & Nevins, J.R. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J. Biol. Chem. 276, 15397–15408 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Zhang, P. et al. The MRG domain of human MRG15 uses a shallow hydrophobic pocket to interact with the N-terminal region of PAM14. Protein Sci. 15, 2423–2434 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Bowman, B.R. et al. Multipurpose MRG domain involved in cell senescence and proliferation exhibits structural homology to a DNA-interacting domain. Structure 14, 151–158 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Buscaino, A. et al. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol. Cell 11, 1265–1277 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Kelley, R.L. et al. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98, 513–522 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Sanchez-Weatherby, J. et al. Improving diffraction by humidity control: a novel device compatible with X-ray beamlines. Acta Crystallogr. D Biol. Crystallogr. 65, 1237–1246 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    CAS  Article  Google Scholar 

  32. 32

    McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  33. 33

    Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  35. 35

    Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  Article  Google Scholar 

  36. 36

    Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Brunger, A.T., DeLaBarre, B., Davies, J.M. & Weis, W.I. X-ray structure determination at low resolution. Acta Crystallogr. D Biol. Crystallogr. 65, 128–133 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  39. 39

    Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Dzeyk of EMBL Heidelberg and I. Berard of the Institut de Biologie Structurale (IBS) Grenoble for their help with mass spectrometry; the High Throughput Crystallisation Laboratory (HTX) group of EMBL Grenoble for performing initial screening crystallization trials; M. Jamin's group for help with the MALLS experiment; the European Synchrotron Radiation Facility (ESRF)-EMBL Joint Structural Biology Group for access to and assistance on the ESRF synchrotron beamlines; P. Tropberger from R. Schneider's laboratory (Max Planck Institute of Immunology, Freiburg) for providing nucleosomes; and D. Panne and members of both laboratories for critical reading of the manuscript. E.H. is a Darwin trust fellow.

Author information

Affiliations

Authors

Contributions

J.K., E.H., S.C. and A.A. designed the project and wrote the manuscript; J.K. and M.L. produced and crystallized the proteins; J.K. solved, refined and analyzed the structures, prepared and tested the mutants in vitro, and carried out HAT assays on the H4 peptide; J.S.-W. and J.K. performed dehydration of MSL1–MSL3 crystals; H.H. performed HAT assays on nucleosomes; and E.H. carried out all in vivo experiments.

Corresponding authors

Correspondence to Stephen Cusack or Asifa Akhtar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Table 1 and Supplementary Methods (PDF 1551 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kadlec, J., Hallacli, E., Lipp, M. et al. Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1. Nat Struct Mol Biol 18, 142–149 (2011). https://doi.org/10.1038/nsmb.1960

Download citation

Further reading

  • Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder

    • Theresa Brunet
    • , Kirsty McWalter
    • , Katharina Mayerhanser
    • , Grace M. Anbouba
    • , Amy Armstrong-Javors
    • , Ingrid Bader
    • , Evan Baugh
    • , Amber Begtrup
    • , Caleb P. Bupp
    • , Bert L. Callewaert
    • , Anna Cereda
    • , Margot A. Cousin
    • , Juan C. Del Rey Jimenez
    • , Laurie Demmer
    • , Nikita R. Dsouza
    • , Nicole Fleischer
    • , Ralitza H. Gavrilova
    • , Sumedha Ghate
    • , Elisabeth Graf
    • , Andrew Green
    • , Sarah R. Green
    • , Maria Iascone
    • , Ameni Kdissa
    • , Dirk Klee
    • , Eric W. Klee
    • , Emily Lancaster
    • , Kristin Lindstrom
    • , Johannes A. Mayr
    • , Meriel McEntagart
    • , Naomi J. L. Meeks
    • , Dana Mittag
    • , Harrison Moore
    • , Anne K. Olsen
    • , Damara Ortiz
    • , Gretchen Parsons
    • , Loren D. M. Pena
    • , Richard E. Person
    • , Sumit Punj
    • , Gonzalo Alonso Ramos-Rivera
    • , Maria J. Guillen Sacoto
    • , G. Bradley Schaefer
    • , Rhonda E. Schnur
    • , Tiana M. Scott
    • , Daryl A. Scott
    • , Carolyn R. Serbinski
    • , Vandana Shashi
    • , Victoria M. Siu
    • , Barbro Fossøy Stadheim
    • , Jennifer A. Sullivan
    • , Jana Švantnerová
    • , Lea Velsher
    • , David S. Wargowski
    • , Ingrid M. Wentzensen
    • , Dagmar Wieczorek
    • , Juliane Winkelmann
    • , Patrick Yap
    • , Michael Zech
    • , Michael T. Zimmermann
    • , Thomas Meitinger
    • , Felix Distelmaier
    •  & Matias Wagner

    Genetics in Medicine (2021)

  • Bioorthogonal Reporters for Detecting and Profiling Protein Acetylation and Acylation

    • Jiabao Song
    •  & Y. George Zheng

    SLAS DISCOVERY: Advancing the Science of Drug Discovery (2020)

  • Crystal structure of GCN5 PCAF N-terminal domain reveals atypical ubiquitin ligase structure

    • Sachiko Toma-Fukai
    • , Ryota Hibi
    • , Takao Naganuma
    • , Mashito Sakai
    • , Shinya Saijo
    • , Nobutaka Shimizu
    • , Michihiro Matsumoto
    •  & Toshiyuki Shimizu

    Journal of Biological Chemistry (2020)

  • Intergenerationally Maintained Histone H4 Lysine 16 Acetylation Is Instructive for Future Gene Activation

    • Maria Samata
    • , Anastasios Alexiadis
    • , Gautier Richard
    • , Plamen Georgiev
    • , Johannes Nuebler
    • , Tanvi Kulkarni
    • , Gina Renschler
    • , M. Felicia Basilicata
    • , Fides Lea Zenk
    • , Maria Shvedunova
    • , Giuseppe Semplicio
    • , Leonid Mirny
    • , Nicola Iovino
    •  & Asifa Akhtar

    Cell (2020)

  • Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability

    • Lin Li
    • , Mohammad Ghorbani
    • , Monika Weisz-Hubshman
    • , Justine Rousseau
    • , Isabelle Thiffault
    • , Rhonda E. Schnur
    • , Catherine Breen
    • , Renske Oegema
    • , Marjan M.M. Weiss
    • , Quinten Waisfisz
    • , Sara Welner
    • , Helen Kingston
    • , Jordan A. Hills
    • , Elles M.J. Boon
    • , Lina Basel-Salmon
    • , Osnat Konen
    • , Hadassa Goldberg-Stern
    • , Lily Bazak
    • , Shay Tzur
    • , Jianliang Jin
    • , Xiuli Bi
    • , Michael Bruccoleri
    • , Kirsty McWalter
    • , Megan T. Cho
    • , Maria Scarano
    • , G. Bradley Schaefer
    • , Susan S. Brooks
    • , Susan Starling Hughes
    • , K.L.I. van Gassen
    • , Johanna M. van Hagen
    • , Tej K. Pandita
    • , Pankaj B. Agrawal
    • , Philippe M. Campeau
    •  & Xiang-Jiao Yang

    Journal of Clinical Investigation (2020)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing