Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Site-resolved measurement of water-protein interactions by solution NMR


The interactions of biological macromolecules with water are fundamental to their structure, dynamics and function. Historically, characterization of the location and residence times of hydration waters of proteins in solution has been quite difficult. Confining proteins within the nanoscale interior of a reverse micelle slows water dynamics, allowing global protein-water interactions to be detected using nuclear magnetic resonance techniques. Complications that normally arise from hydrogen exchange and long-range dipolar coupling are overcome by the nature of the reverse micelle medium. Characterization of the hydration of ubiquitin demonstrates that encapsulation within a reverse micelle allows detection of dozens of hydration waters. Comparison of nuclear Overhauser effects obtained in the laboratory and rotating frames indicate a considerable range of hydration water dynamics is present on the protein surface. In addition, an unprecedented clustering of different hydration-dynamics classes of sites is evident.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of ubiquitin in an AOT reverse micelle.
Figure 2: Detection of protein hydration by solution NMR.
Figure 3: Ubiquitin hydration dynamics map.
Figure 4: Comparison of crystallographic and solution NMR-detected hydration of human ubiquitin.


  1. 1

    Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Otting, G., Liepinsh, E. & Wuthrich, K. Protein hydration in aqueous solution. Science 254, 974–980 (1991).

    CAS  Article  Google Scholar 

  3. 3

    Otting, G. NMR studies of water bound to biological molecules. Prog. Nucl. Magn. Reson. Spectrosc. 31, 259–285 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Bagchi, B. Water dynamics in the hydration layer around proteins and micelles. Chem. Rev. 105, 3197–3219 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Halle, B. Protein hydration dynamics in solution: a critical survey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1207–1224 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Pal, S.K. & Zewail, A.H. Dynamics of water in biological recognition. Chem. Rev. 104, 2099–2124 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Zaccai, G. The effect of water on protein dynamics. Phil. Trans. R. Soc. Lond. B 359, 1269–1275 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Mattea, C., Qvist, J. & Halle, B. Dynamics at the protein-water interface from O-17 spin relaxation in deeply supercooled solutions. Biophys. J. 95, 2951–2963 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Gruschus, J.M. & Ferretti, J.A. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR. J. Biomol. NMR 20, 111–126 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Halle, B. Cross-relaxation between macromolecular and solvent spins: The role of long-range dipole couplings. J. Chem. Phys. 119, 12372–12385 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Frezzato, D., Rastrelli, F. & Bagno, A. Nuclear spin relaxation driven by intermolecular dipolar interactions: the role of solute-solvent pair correlations in the modeling of spectral density functions. J. Phys. Chem. B 110, 5676–5689 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Jeener, J., Vlassenbroek, A. & Broekaert, P. Unified derivation of the dipolar field and relaxation terms in the Bloch-Redfield equations of liquid NMR. J. Chem. Phys. 103, 1309–1332 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Modig, K., Liepinsh, E., Otting, G. & Halle, B. Dynamics of protein and peptide hydration. J. Am. Chem. Soc. 126, 102–114 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Babu, C.R., Flynn, P.F. & Wand, A.J. Validation of protein structure from preparations of encapsulated proteins dissolved in low viscosity fluids. J. Am. Chem. Soc. 123, 2691–2692 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Valentine, K.G. et al. Magnetic susceptibility-induced alignment of proteins in reverse micelles. J. Am. Chem. Soc. 128, 15930–15931 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Wand, A.J., Ehrhardt, M.R. & Flynn, P.F. High-resolution NMR of encapsulated proteins dissolved in low-viscosity fluids. Proc. Natl. Acad. Sci. USA 95, 15299–15302 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Peterson, R.W., Lefebvre, B.G. & Wand, A.J. High-resolution NMR studies of encapsulated proteins in liquid ethane. J. Am. Chem. Soc. 127, 10176–10177 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Thompson, K.F. & Gierasch, L.M. Conformation of a peptide solubilizate in a reversed micelle water pool. J. Am. Chem. Soc. 106, 3648–3652 (1984).

    CAS  Article  Google Scholar 

  19. 19

    Babu, C.R., Hilser, V.J. & Wand, A.J. Direct access to the cooperative substructure of protein and the protein ensemble via cold denaturation. Nat. Struct. Mol. Biol. 11, 352–357 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Peterson, R.W., Anbalagan, K., Tommos, C. & Wand, A.J. Forced folding and structural analysis of metastable proteins. J. Am. Chem. Soc. 126, 9498–9499 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Kielec, J.M., Valentine, K.G., Babu, C.R. & Wand, A.J. Reverse micelles in integral membrane protein structural biology by solution NMR spectroscopy. Structure 17, 345–351 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Workman, H. & Flynn, P.F. Stabilization of RNA oligomers through reverse micelle encapsulation. J. Am. Chem. Soc. 131, 3806–3807 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Valentine, K.G. et al. Reverse micelle encapsulation of membrane-anchored proteins for solution NMR studies. Structure 18, 9–16 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Piletic, I.R., Moilanen, D.E., Spry, D.B., Levinger, N.E. & Fayer, M.D. Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J. Phys. Chem. A 110, 4985–4999 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Park, S., Moilanen, D.E. & Fayer, M.D. Water dynamics—The effects of ions and nanoconfinement. J. Phys. Chem. B 112, 5279–5290 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Fenn, E.E., Wong, D.B. & Fayer, M.D. Water dynamics at neutral and ionic interfaces. Proc. Natl. Acad. Sci. USA 106, 15243–15248 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Vijay-Kumar, S., Bugg, C.E. & Cook, W.J. Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194, 531–544 (1987).

    CAS  Article  Google Scholar 

  28. 28

    Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  Article  Google Scholar 

  29. 29

    Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. & Bax, A. 3-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. Chem. Soc. 111, 1515–1517 (1989).

    CAS  Article  Google Scholar 

  30. 30

    Clore, G.M., Bax, A., Wingfield, P.T. & Gronenborn, A.M. Identification and localization of bound internal water in the solution structure of interleukin 1 beta by heteronuclear three-dimensional 1H rotating-frame Overhauser 15N–1H multiple quantum coherence NMR spectroscopy. Biochemistry 29, 5671–5676 (1990).

    CAS  Article  Google Scholar 

  31. 31

    Brüschweiler, R. & Wright, P.E. Water self-diffusion model for protein-water NMR cross relaxation. Chem. Phys. Lett. 229, 75–81 (1994).

    Article  Google Scholar 

  32. 32

    Nakasako, M. Water-protein interactions from high-resolution protein crystallography. Phil. Trans. R. Soc. Lond. B 359, 1191–1206 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Alexeev, D. et al. Synthetic, structural and biological studies of the ubiquitin system: chemically synthesized and native ubiquitin fold into identical three-dimensional structures. Biochem. J. 299, 159–163 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Persson, E. & Halle, B. Nanosecond to microsecond protein dynamics probed by magnetic relaxation dispersion of buried water molecules. J. Am. Chem. Soc. 130, 1774–1787 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Ernst, J.A., Clubb, R.T., Zhou, H.X., Gronenborn, A.M. & Clore, G.M. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science 267, 1813–1817 (1995).

    CAS  Article  Google Scholar 

  36. 36

    Zhou, H.-X., Rivas, G. & Minton, A.P. Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Mukherjee, S., Chowdhury, P. & Gai, F. Tuning the cooperativity of the helix-coil transition by aqueous reverse micelles. J. Phys. Chem. B 110, 11615–11619 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Simorellis, A.K. & Flynn, P.F. Fast local backbone dynamics of encapsulated ubiquitin. J. Am. Chem. Soc. 128, 9580–9581 (2006).

    CAS  Article  Google Scholar 

  39. 39

    DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific LLC, Palo Alto, California, USA, 2009).

  40. 40

    Wand, A.J., Urbauer, J.L., McEvoy, R.P. & Bieber, R.J. Internal dynamics of human ubiquitin revealed by 13C-relaxation studies of randomly fractionally labeled protein. Biochemistry 35, 6116–6125 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Baryshnikova, O.K., Williams, T.C. & Sykes, B.D. Internal pH indicators for biomolecular NMR. J. Biomol. NMR 41, 5–7 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Palmer, A.G. III, Cavanagh, J., Wright, P.E. & Rance, M. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson. 93, 151–170 (1991).

    CAS  Google Scholar 

  43. 43

    Zuiderweg, E.R.P. & Fesik, S.W. Heteronuclear 3-dimensional NMR spectroscopy of the inflammatory protein C5A. Biochemistry 28, 2387–2391 (1989).

    CAS  Article  Google Scholar 

  44. 44

    Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. & Tschudin, R. Comparison of different modes of 2-dimensional reverse-correlation NMR for the study of proteins. J. Magn. Reson. 86, 304–318 (1990).

    CAS  Google Scholar 

  45. 45

    Norwood, T.J., Boyd, J., Heritage, J.E., Soffe, N. & Campbell, I.D. Comparison of techniques for 1H-detected heteronuclear 1H-15N spectroscopy. J. Magn. Reson. 87, 488–501 (1990).

    CAS  Google Scholar 

  46. 46

    Bax, A. & Davis, D.G. Practical aspects of two-dimensional transverse NOE spectroscopy. J. Magn. Reson. 63, 207–213 (1985).

    CAS  Google Scholar 

  47. 47

    Bothner-By, A.A., Stephens, R.L., Lee, J., Warren, C.D. & Jeanloz, R.W. Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 106, 811–813 (1984).

    CAS  Article  Google Scholar 

  48. 48

    Griesinger, C. & Ernst, R.R. Frequency offset effects and their elimination in NMR rotating-frame cross-relaxation spectroscopy. J. Magn. Reson. 75, 261–271 (1987).

    CAS  Google Scholar 

  49. 49

    Goddard, T.D. & Kneller, D.G. SPARKY 3.0. (University of California, San Francisco, San Francisco, California, USA).

  50. 50

    Macura, S. & Ernst, R.R. Elucidation of cross relaxation in liquids by two-dimensional NMR spectroscopy. Mol. Phys. 41, 95–117 (1980).

    CAS  Article  Google Scholar 

  51. 51

    Farrow, N.A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. & Torchia, D.A. Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J. Magn. Reson. 97, 359–375 (1992).

    CAS  Google Scholar 

  53. 53

    Peng, J.W. & Wagner, G. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 98, 308–332 (1992).

    CAS  Google Scholar 

  54. 54

    Coleman, R.G. & Sharp, K.A. Travel depth, a new shape descriptor for macromolecules: application to ligand binding. J. Mol. Biol. 362, 441–458 (2006).

    CAS  Article  Google Scholar 

  55. 55

    Coleman, R.G. & Sharp, K.A. Shape and evolution of thermostable protein structure. Proteins 78, 420–433 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Connolly, M.L. Analytical molecular surface calculation. J. Appl. Cryst. 16, 548–558 (1983).

    CAS  Article  Google Scholar 

  57. 57

    Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    CAS  Article  PubMed  Google Scholar 

Download references


We are grateful to K. Valentine, J. Gledhill and J. Dogan for helpful discussion and to B. Halle for comments on an early draft of this manuscript. Supported by a grant from the US National Science Foundation (MCB-0842814) and a grant from the Mathers Foundation. N.V.N. is the recipient of a US National Institutes of Health postdoctoral fellowship (GM 087099).

Author information




A.J.W. designed and initiated the study. M.S.P. carried out preliminary NMR experiments. N.V.N. optimized the NMR experiments, and collected and analyzed the data. A.J.W. and N.V.N. wrote the manuscript.

Corresponding author

Correspondence to A Joshua Wand.

Ethics declarations

Competing interests

A.J.W. declares a competing financial interest as a member of Daedalus Innovations, LLC, a manufacturer of high pressure and reverse micelle NMR apparatus.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–2 (PDF 393 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nucci, N., Pometun, M. & Wand, A. Site-resolved measurement of water-protein interactions by solution NMR. Nat Struct Mol Biol 18, 245–249 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing