Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Fas–FADD death domain complex structure reveals the basis of DISC assembly and disease mutations

Abstract

The death-inducing signaling complex (DISC) formed by the death receptor Fas, the adaptor protein FADD and caspase-8 mediates the extrinsic apoptotic program. Mutations in Fas that disrupt the DISC cause autoimmune lymphoproliferative syndrome (ALPS). Here we show that the Fas–FADD death domain (DD) complex forms an asymmetric oligomeric structure composed of 5–7 Fas DD and 5 FADD DD, whose interfaces harbor ALPS-associated mutations. Structure-based mutations disrupt the Fas–FADD interaction in vitro and in living cells; the severity of a mutation correlates with the number of occurrences of a particular interaction in the structure. The highly oligomeric structure explains the requirement for hexameric or membrane-bound FasL in Fas signaling. It also predicts strong dominant negative effects from Fas mutations, which are confirmed by signaling assays. The structure optimally positions the FADD death effector domain (DED) to interact with the caspase-8 DED for caspase recruitment and higher-order aggregation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Biochemical and structural characterization of the Fas DD–FADD DD complexes.
Figure 2: Interactions in the Fas DD–FADD DD complex.
Figure 3: Structure-based mutagenesis and analysis of ALPS mutations.
Figure 4: Interactions in living cells and functional effects of Fas DD and FADD DD mutations.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. 1

    Park, H.H. et al. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol. 25, 561–586 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Kohl, A. & Grutter, M.G. Fire and death: the pyrin domain joins the death-domain superfamily. C. R. Biol. 327, 1077–1086 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Chinnaiyan, A.M., O′Rourke, K., Tewari, M. & Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Strasser, A., Jost, P.J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Wajant, H. The Fas signaling pathway: more than a paradigm. Science 296, 1635–1636 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Kischkel, F.C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Huang, B., Eberstadt, M., Olejniczak, E.T., Meadows, R.P. & Fesik, S.W. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384, 638–641 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Berglund, H. et al. The three-dimensional solution structure and dynamic properties of the human FADD death domain. J. Mol. Biol. 302, 171–188 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Jeong, E.J. et al. The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD. J. Biol. Chem. 274, 16337–16342 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Hill, J.M. et al. Identification of an expanded binding surface on the FADD death domain responsible for interaction with CD95/Fas. J. Biol. Chem. 279, 1474–1481 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Martin, D.A. et al. Defective CD95/APO–1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc. Natl. Acad. Sci. USA 96, 4552–4557 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Rieux-Laucat, F., Le Deist, F. & Fischer, A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ. 10, 124–133 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Bettinardi, A. et al. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. Blood 89, 902–909 (1997).

    CAS  PubMed  Google Scholar 

  14. 14

    Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    CAS  Article  Google Scholar 

  15. 15

    Oliveira, J.B. & Gupta, S. Disorders of apoptosis: mechanisms for autoimmunity in primary immunodeficiency diseases. J. Clin. Immunol. 28 (Suppl 1), S20–S28 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Scott, F.L. et al. The Fas–FADD death domain complex structure unravels signalling by receptor clustering. Nature 457, 1019–1022 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Park, H.H. et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128, 533–546 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Siegel, R.M. et al. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci. STKE 2000, Pl1 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Vaishnaw, A.K. et al. The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations. J. Clin. Invest. 103, 355–363 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Carrington, P.E. et al. The structure of FADD and its mode of interaction with procaspase-8. Mol. Cell 22, 599–610 (2006).

    CAS  Article  Google Scholar 

  21. 21

    O' Reilly, L.A. et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, 659–663 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Dhein, J. et al. Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J. Immunol. 149, 3166–3173 (1992).

    CAS  PubMed  Google Scholar 

  23. 23

    Muppidi, J.R. & Siegel, R.M. Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nat. Immunol. 5, 182–189 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Holler, N. et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol. Cell. Biol. 23, 1428–1440 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Tibbetts, M.D., Zheng, L. & Lenardo, M.J. The death effector domain protein family: regulators of cellular homeostasis. Nat. Immunol. 4, 404–409 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Yang, J.K. et al. Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol. Cell 20, 939–949 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Siegel, R.M. et al. SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. J. Cell Biol. 167, 735–744 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Xiao, T., Towb, P., Wasserman, S.A. & Sprang, S.R. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 99, 545–555 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Qin, H. et al. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399, 549–557 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Lin, S.C., Lo, Y.C. & Wu, H. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proced. Online 6, 23–34 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Li, Z., Hite, R.K., Cheng, Y. & Walz, T. Evaluation of imaging plates as recording medium for images of negatively stained single particles and electron diffraction patterns of two-dimensional crystals. J. Electron Microsc. (Tokyo) 59, 53–63 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Sobott, F., Hernandez, H., McCammon, M.G., Tito, M.A. & Robinson, C.V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Hernández, H. & Robinson, C.V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2, 715–726 (2007).

    Article  Google Scholar 

  36. 36

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  Article  Google Scholar 

  37. 37

    Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. Biol. Crystallogr. 54, 905–921 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Collaborative Computational Project. N. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  40. 40

    Delano, W.L. The PyMol Molecular Graphics System (Delano Scientific, 2002).

  41. 41

    Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    CAS  Article  Google Scholar 

  42. 42

    Siegel, R.M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Herzenberg, L.A., Tung, J., Moore, W.A. & Parks, D.R. Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol. 7, 681–685 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Y.C. Park for earlier work on this project and K. Rajashankar, I. Kourinov and N. Sukumar for help with data collection . This work was supported by US National Institutes of Health grant R01-AI50872 (H.W.), the Post-doctoral Fellowship Program of Korea Science and Engineering Foundation (KOSEF) (J.K.Y.), the 2008 Long-term Overseas Dispatch Program for Pusan National University's Tenure-track Faculty (S.B.J.), the Biotechnology and Biological Sciences Research Council (A.Y.P.), the Royal Society (C.V.R.) and the Walters-Kundert Trust (C.V.R.). Diffraction data collection was conducted at the Northeastern Collaborative Access Team beam lines of the Advanced Photon Source at Argonne National Laboratory, supported by award RR-15301 from the National Center for Research Resources at the US National Institutes of Health. S.R. was a fellow of the German Academy of Sciences Leopoldina (BMBF-LPD 9901/8-163). T.W. is an investigator of the Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Contributions

H.W. initiated the project and participated in project design and analysis; L.W. provided the samples for EM; L.W. and E.D. performed in vitro mutagenesis experiments; L.W. and Q.Y. performed multi-angle light scattering experiments; J.K.Y., L.W. and S.B.J. grew the crystals and collected the diffraction data; V.K. and H.W. solved the structure; E.D. performed the CD experiments and the salt-dependence experiments; A.J.R., S.R. and T.W. performed the EM experiments; A.C.C. and R.M.S. performed the cell biology experiments; A.Y.P. and C.V.R. performed the mass spectrometry experiments; H.W. made the figures and wrote the manuscript.

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4 and Supplementary Figures 1–4 (PDF 8664 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, L., Yang, J., Kabaleeswaran, V. et al. The Fas–FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 17, 1324–1329 (2010). https://doi.org/10.1038/nsmb.1920

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing