Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of HIV-1 resistance to AZT by excision

Abstract

Human immunodeficiency virus (HIV-1) develops resistance to 3′-azido-2′,3′-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3′ end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA). We determined five crystal structures: wild-type reverse transcriptase–double-stranded DNA (RT–dsDNA)–AZTppppA; AZT-resistant (AZTr; M41L D67N K70R T215Y K219Q) RT–dsDNA–AZTppppA; AZTr RT–dsDNA terminated with AZT at dNTP- and primer-binding sites; and AZTr apo reverse transcriptase. The AMP part of AZTppppA bound differently to wild-type and AZTr reverse transcriptases, whereas the AZT triphosphate part bound the two enzymes similarly. Thus, the resistance mutations create a high-affinity ATP-binding site. The structure of the site provides an opportunity to design inhibitors of AZT-monophosphate excision.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical reactions of DNA polymerization and ATP-mediated pyrophosphorolytic excision catalyzed by HIV-1 reverse transcriptase (RT).
Figure 2: Binding of AZTppppA′ to AZTr HIV-1 reverse transcriptase.
Figure 3: AZTppppA′ binds differently to AZTr reverse transcriptase than to wild-type reverse transcriptase.
Figure 4: Superposition of AZTr reverse transcriptase excision product complex (yellow) and AZTr reverse transcriptase–template-primer–AZTMP (N site) complex (gray) structures.
Figure 5: Mechanism of ATP-mediated excision by HIV-1 reverse transcriptase.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Fauci, A.S. 25 years of HIV/AIDS science: reaching the poor with research advances. Cell 131, 429–432 (2007).

    Google Scholar 

  2. Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. & Steitz, T.A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256, 1783–1790 (1992).

    Google Scholar 

  3. Jacobo-Molina, A. et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl. Acad. Sci. USA 90, 6320–6324 (1993).

    Google Scholar 

  4. Huang, H., Chopra, R., Verdine, G.L. & Harrison, S.C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 (1998).

    Google Scholar 

  5. Sarafianos, S.G. et al. Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with β-branched amino acids. Proc. Natl. Acad. Sci. USA 96, 10027–10032 (1999).

    Google Scholar 

  6. Das, K. et al. Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J. Biol. Chem. 284, 35092–35100 (2009).

    Google Scholar 

  7. Larder, B.A. & Kemp, S.D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246, 1155–1158 (1989).

    Google Scholar 

  8. Arion, D., Kaushik, N., McCormick, S., Borkow, G. & Parniak, M.A. Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37, 15908–15917 (1998).

    Google Scholar 

  9. Meyer, P.R., Matsuura, S.E., So, A.G. & Scott, W.A. Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc. Natl. Acad. Sci. USA 95, 13471–13476 (1998).

    Google Scholar 

  10. Meyer, P.R., Matsuura, S.E., Mian, A.M., So, A.G. & Scott, W.A. A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol. Cell 4, 35–43 (1999).

    Google Scholar 

  11. Boyer, P.L., Sarafianos, S.G., Arnold, E. & Hughes, S.H. Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J. Virol. 75, 4832–4842 (2001).

    Google Scholar 

  12. Jeeninga, R.E., Keulen, W., Boucher, C., Sanders, R.W. & Berkhout, B. Evolution of AZT resistance in HIV-1: the 41–70 intermediate that is not observed in vivo has a replication defect. Virology 283, 294–305 (2001).

    Google Scholar 

  13. Mas, A. et al. Role of a dipeptide insertion between codons 69 and 70 of HIV-1 reverse transcriptase in the mechanism of AZT resistance. EMBO J. 19, 5752–5761 (2000).

    Google Scholar 

  14. Boyer, P.L., Sarafianos, S.G., Arnold, E. & Hughes, S.H. Nucleoside analog resistance caused by insertions in the fingers of human immunodeficiency virus type 1 reverse transcriptase involves ATP-mediated excision. J. Virol. 76, 9143–9151 (2002).

    Google Scholar 

  15. Meyer, P.R., Lennerstrand, J., Matsuura, S.E., Larder, B.A. & Scott, W.A. Effects of dipeptide insertions between codons 69 and 70 of human immunodeficiency virus type 1 reverse transcriptase on primer unblocking, deoxynucleoside triphosphate inhibition, and DNA chain elongation. J. Virol. 77, 3871–3877 (2003).

    Google Scholar 

  16. Meyer, P.R. et al. Relationship between 3′-azido-3′-deoxythymidine resistance and primer unblocking activity in foscarnet-resistant mutants of human immunodeficiency virus type 1 reverse transcriptase. J. Virol. 77, 6127–6137 (2003).

    Google Scholar 

  17. Sluis-Cremer, N. et al. Molecular mechanism by which the K70E mutation in human immunodeficiency virus type 1 reverse transcriptase confers resistance to nucleoside reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 51, 48–53 (2007).

    Google Scholar 

  18. Dharmasena, S., Pongracz, Z., Arnold, E., Sarafianos, S.G. & Parniak, M.A. 3′-Azido-3′-deoxythymidine-(5′)-tetraphospho-(5′)-adenosine, the product of ATP-mediated excision of chain-terminating AZTMP, is a potent chain-terminating substrate for HIV-1 reverse transcriptase. Biochemistry 46, 828–836 (2007).

    Google Scholar 

  19. Han, Q., Gaffney, B.L. & Jones, R.A. One-flask synthesis of dinucleoside tetra- and pentaphosphates. Org. Lett. 8, 2075–2077 (2006).

    Google Scholar 

  20. Sarafianos, S.G. et al. Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA. EMBO J. 21, 6614–6624 (2002).

    Google Scholar 

  21. Carfí, A., Smith, C.A., Smolak, P.J., McGrew, J. & Wiley, D.C. Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc. Natl. Acad. Sci. USA 96, 12379–12383 (1999).

    Google Scholar 

  22. Kleywegt, G.J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D Biol. Crystallogr. 52, 842–857 (1996).

    Google Scholar 

  23. Carroll, S.S. et al. Sensitivity of HIV-1 reverse transcriptase and its mutants to inhibition by azidothymidine triphosphate. Biochemistry 33, 2113–2120 (1994).

    Google Scholar 

  24. Kerr, S.G. & Anderson, K.S. Pre-steady-state kinetic characterization of wild type and 3′-azido-3′-deoxythymidine (AZT) resistant human immunodeficiency virus type 1 reverse transcriptase: implication of RNA directed DNA polymerization in the mechanism of AZT resistance. Biochemistry 36, 14064–14070 (1997).

    Google Scholar 

  25. Krebs, R., Immendorfer, U., Thrall, S.H., Wohrl, B.M. & Goody, R.S. Single-step kinetics of HIV-1 reverse transcriptase mutants responsible for virus resistance to nucleoside inhibitors zidovudine and 3-TC. Biochemistry 36, 10292–10300 (1997).

    Google Scholar 

  26. Hsiou, Y. et al. Structure of unliganded HIV-1 reverse transcriptase at 2.7 Å resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure 4, 853–860 (1996).

    Google Scholar 

  27. Ueno, T. & Mitsuya, H. Comparative enzymatic study of HIV-1 reverse transcriptase resistant to 2′,3′-dideoxynucleotide analogs using the single-nucleotide incorporation assay. Biochemistry 36, 1092–1099 (1997).

    Google Scholar 

  28. Deval, J. et al. The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J. Biol. Chem. 277, 42097–42104 (2002).

    Google Scholar 

  29. Sluis-Cremer, N. et al. The 3′-azido group is not the primary determinant of 3′-azido-3′-deoxythymidine (AZT) responsible for the excision phenotype of AZT-resistant HIV-1. J. Biol. Chem. 280, 29047–29052 (2005).

    Google Scholar 

  30. Meyer, P.R., Smith, A.J., Matsuura, S.E. & Scott, W.A. Chain-terminating dinucleoside tetraphosphates are substrates for DNA polymerization by human immunodeficiency virus type 1 reverse transcriptase with increased activity against thymidine analogue-resistant mutants. Antimicrob. Agents Chemother. 50, 3607–3614 (2006).

    Google Scholar 

  31. Ray, A.S. et al. Probing the molecular mechanisms of AZT drug resistance mediated by HIV-1 reverse transcriptase using a transient kinetic analysis. Biochemistry 42, 8831–8841 (2003).

    Google Scholar 

  32. Selmi, B. et al. The Y181C substitution in 3′-azido-3′-deoxythymidine-resistant human immunodeficiency virus, type 1, reverse transcriptase suppresses the ATP-mediated repair of the 3′-azido-3′-deoxythymidine 5′-monophosphate-terminated primer. J. Biol. Chem. 278, 40464–40472 (2003).

    Google Scholar 

  33. White, K.L. et al. Molecular mechanisms of tenofovir resistance conferred by human immunodeficiency virus type 1 reverse transcriptase containing a diserine insertion after residue 69 and multiple thymidine analog-associated mutations. Antimicrob. Agents Chemother. 48, 992–1003 (2004).

    Google Scholar 

  34. Boyer, P.L., Imamichi, T., Sarafianos, S.G., Arnold, E. & Hughes, S.H. Effects of the Delta67 complex of mutations in human immunodeficiency virus type 1 reverse transcriptase on nucleoside analog excision. J. Virol. 78, 9987–9997 (2004).

    Google Scholar 

  35. Hooker, D.J. et al. An in vivo mutation from leucine to tryptophan at position 210 in human immunodeficiency virus type 1 reverse transcriptase contributes to high-level resistance to 3′-azido-3′-deoxythymidine. J. Virol. 70, 8010–8018 (1996).

    Google Scholar 

  36. Harrigan, P.R. et al. Significance of amino acid variation at human immunodeficiency virus type 1 reverse transcriptase residue 210 for zidovudine susceptibility. J. Virol. 70, 5930–5934 (1996).

    Google Scholar 

  37. Romano, L. et al. Broad nucleoside-analogue resistance implications for human immunodeficiency virus type 1 reverse-transcriptase mutations at codons 44 and 118. J. Infect. Dis. 185, 898–904 (2002).

    Google Scholar 

  38. Marcelin, A.G. et al. Thymidine analogue reverse transcriptase inhibitors resistance mutations profiles and association to other nucleoside reverse transcriptase inhibitors resistance mutations observed in the context of virological failure. J. Med. Virol. 72, 162–165 (2004).

    Google Scholar 

  39. Girouard, M., Diallo, K., Marchand, B., McCormick, S. & Gotte, M. Mutations E44D and V118I in the reverse transcriptase of HIV-1 play distinct mechanistic roles in dual resistance to AZT and 3TC. J. Biol. Chem. 278, 34403–34410 (2003).

    Google Scholar 

  40. White, K.L. et al. The K65R reverse transcriptase mutation in HIV-1 reverses the excision phenotype of zidovudine resistance mutations. Antivir. Ther. 11, 155–163 (2006).

    Google Scholar 

  41. Parikh, U.M., Zelina, S., Sluis-Cremer, N. & Mellors, J.W. Molecular mechanisms of bidirectional antagonism between K65R and thymidine analog mutations in HIV-1 reverse transcriptase. AIDS 21, 1405–1414 (2007).

    Google Scholar 

  42. Gu, Z., Fletcher, R.S., Arts, E.J., Wainberg, M.A. & Parniak, M.A. The K65R mutant reverse transcriptase of HIV-1 cross-resistant to 2′, 3′-dideoxycytidine, 2′,3′-dideoxy-3′-thiacytidine, and 2′,3′-dideoxyinosine shows reduced sensitivity to specific dideoxynucleoside triphosphate inhibitors in vitro. J. Biol. Chem. 269, 28118–28122 (1994).

    Google Scholar 

  43. White, K.L. et al. A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT. AIDS 19, 1751–1760 (2005).

    Google Scholar 

  44. Das, K. et al. Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J. Mol. Biol. 365, 77–89 (2007).

    Google Scholar 

  45. Mansky, L.M. & Bernard, L.C. 3′-Azido-3′-deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1. J. Virol. 74, 9532–9539 (2000).

    Google Scholar 

  46. Das, K. et al. Molecular modeling and biochemical characterization reveal the mechanism of hepatitis B virus polymerase resistance to lamivudine (3TC) and emtricitabine (FTC). J. Virol. 75, 4771–4779 (2001).

    Google Scholar 

  47. Urban, S., Fischer, K.P. & Tyrrell, D.L. Efficient pyrophosphorolysis by a hepatitis B virus polymerase may be a primer-unblocking mechanism. Proc. Natl. Acad. Sci. USA 98, 4984–4989 (2001).

    Google Scholar 

  48. Deval, J., Powdrill, M.H., D'Abramo, C.M., Cellai, L. & Gotte, M. Pyrophosphorolytic excision of nonobligate chain terminators by hepatitis C virus NS5B polymerase. Antimicrob. Agents Chemother. 51, 2920–2928 (2007).

    Google Scholar 

  49. Acosta-Hoyos, A.J. & Scott, W.A. The role of nucleotide excision by reverse transcriptase in HIV drug resistance. Viruses 2, 372–394 (2010).

    Google Scholar 

  50. Kellam, P., Boucher, C.A. & Larder, B.A. Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc. Natl. Acad. Sci. USA 89, 1934–1938 (1992).

    Google Scholar 

  51. Deval, J. et al. Mechanistic basis for reduced viral and enzymatic fitness of HIV-1 reverse transcriptase containing both K65R and M184V mutations. J. Biol. Chem. 279, 509–516 (2004).

    Google Scholar 

  52. Sluis-Cremer, N., Arion, D., Kaushik, N., Lim, H. & Parniak, M.A. Mutational analysis of Lys65 of HIV-1 reverse transcriptase. Biochem. J. 348, 77–82 (2000).

    Google Scholar 

  53. Arion, D. & Parniak, M.A. HIV resistance to zidovudine: the role of pyrophosphorolysis. Drug Resist. Updat. 2, 91–95 (1999).

    Google Scholar 

  54. Yahi, N. et al. Mutation patterns of the reverse transcriptase and protease genes in human immunodeficiency virus type 1-infected patients undergoing combination therapy: survey of 787 sequences. J. Clin. Microbiol. 37, 4099–4106 (1999).

    Google Scholar 

  55. Cozzi-Lepri, A. et al. Thymidine analogue mutation profiles: factors associated with acquiring specific profiles and their impact on the virological response to therapy. Antivir. Ther. 10, 791–802 (2005).

    Google Scholar 

  56. Sarafianos, S.G. et al. Trapping HIV-1 reverse transcriptase before and after translocation on DNA. J. Biol. Chem. 278, 16280–16288 (2003).

    Google Scholar 

  57. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Google Scholar 

  58. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Google Scholar 

  59. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  60. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Google Scholar 

Download references

Acknowledgements

We acknowledge personnel at the Cornell High Energy Synchrotron Source and the Advanced Photon Source for support of data collection, the members of our laboratories, including R. Bandwar and S. Martinez, for valuable conversations and assistance, and P. Clark for assistance with protein preparation. We are grateful to the US National Institutes of Health (NIH; grants R37 MERIT Award AI 27690 to E.A. and P01 GM 066671 to E.A. and R.A.J.) for support of reverse transcriptase structural studies. S.H.H. was supported by the Intramural Research Program of NIH, US National Cancer Institute (NCI), Center for Cancer Research and US National Institute of General Medical Sciences. This research was supported, in part, by the Intramural Research Program of the NIH, NCI, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

X.T. carried out the research, did analysis and helped with writing the manuscript. K.D. advised on crystallographic studies and did analysis, writing and editing of the manuscript. Q.H., J.D.B., X.H., B.L.G. and R.A.J. contributed special reagents. A.D.C. and Y.V.F. carried out parts of the research. P.L.B. contributed special reagents and manuscript editing. S.H.H. carried out analysis and manuscript writing and editing. S.G.S. designed the research and advised on experiments and manuscript editing. E.A. designed the research, supervised the project and did analysis, writing and editing of the manuscript.

Corresponding author

Correspondence to Eddy Arnold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 570 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, X., Das, K., Han, Q. et al. Structural basis of HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 17, 1202–1209 (2010). https://doi.org/10.1038/nsmb.1908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing