The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA


Individuals with BRCA2 mutations are predisposed to breast cancers owing to genome instability. To determine the functions of BRCA2, the human protein was purified. It was found to bind selectively to single-stranded DNA (ssDNA), and to ssDNA in tailed duplexes and replication fork structures. Monomeric and dimeric forms of BRCA2 were observed by EM. BRCA2 directed the binding of RAD51 recombinase to ssDNA, reduced the binding of RAD51 to duplex DNA and stimulated RAD51-mediated DNA strand exchange. These observations provide a molecular basis for the role of BRCA2 in the maintenance of genome stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Purified BRCA2 binds specifically to ssDNA.
Figure 2: Binding of BRCA2 to tailed duplex DNA.
Figure 3: BRCA2 targets RAD51 to ssDNA and stimulates DNA strand exchange.


  1. 1

    Moynahan, M.E. & Jasin, M. Nat. Rev. Mol. Cell Biol. 11, 196–207 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Bork, P., Blomberg, N. & Nilges, M. Nat. Genet. 13, 22–23 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Thorslund, T., Esashi, F. & West, S.C. EMBO J. 26, 2915–2922 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Yang, H. et al. Science 297, 1837–1848 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Esashi, F. et al. Nature 434, 598–604 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Ayoub, N. et al. Curr. Biol. 19, 1075–1085 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Yang, H., Li, Q., Holloman, W.K. & Pavletich, N.P. Nature 433, 653–657 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Petalcorin, M.I.R., Sandall, J., Wigley, D.B. & Boulton, S.J. J. Mol. Biol. 361, 231–242 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Shivji, M.K.K. et al. Nucleic Acids Res. 34, 4000–4011 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Shivji, M.K.K. et al. Proc. Natl. Acad. Sci. USA 106, 13254–13259 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Carreira, A. et al. Cell 136, 1032–1043 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Tal, A., Arbel-Goren, R. & Stavans, J. J. Mol. Biol. 393, 1007–1012 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Lekomtsev, S., Guizetti, J., Pozniakovsky, A., Gerlich, D.W. & Petronczki, M. J. Cell Sci. 123, 1395–1400 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Sy, S.M.H., Huen, M.S.Y. & Chen, J.J. Proc. Natl. Acad. Sci. USA 106, 7155–7160 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Benson, F.E., Stasiak, A. & West, S.C. EMBO J. 13, 5764–5771 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Zhou, Q. et al. Mol. Cell. Biol. 27, 2512–2526 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Shin, D.S. et al. EMBO J. 22, 4566–4576 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Gasior, S.L. et al. Proc. Natl. Acad. Sci. USA 98, 8411–8418 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Song, B.W. & Sung, P. J. Biol. Chem. 275, 15895–15904 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Sugiyama, T. & Kowalczykowski, S.C. J. Biol. Chem. 277, 31663–31672 (2002).

    CAS  Article  Google Scholar 

  21. 21

    de Vries, F.A.T. et al. DNA Repair (Amst.) 4, 1121–1128 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Rijkers, T. et al. Mol. Cell. Biol. 18, 6423–6429 (1998).

    CAS  Article  Google Scholar 

Download references


We thank T. Hyman (Max Planck Institute, Dresden) for providing the BAC modification cassettes. This work was supported by grants to S.C.W. (Cancer Research UK, the Breast Cancer Campaign, the Louis-Jeantet Foundation, Swiss Bridge and the European Research Council) and to J.D.G. and S.A.C. (US National Institutes of Health). T.T. was supported by the Alfred Benzon Foundation and the Carlsberg Foundation and S.L. by a European Molecular Biology Organization fellowship.

Author information




T.T. and S.C.W. designed the study; S.L. and M.P. made the BRCA2 constructs; T.T. and M.J.M. made the RAD51 expression vectors, purified the proteins and carried out the biochemical analyses; and S.A.C. and J.D.G. visualized BRCA2 by electron microscopy. S.C.W. wrote the manuscript with contributions from T.T., S.A.C. and J.D.G.

Corresponding author

Correspondence to Stephen C West.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 9002 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thorslund, T., McIlwraith, M., Compton, S. et al. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 17, 1263–1265 (2010).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing