Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of substrate recognition and specificity in the N-end rule pathway

Abstract

The N-end rule links the half-life of a protein to the identity of its N-terminal residue. Destabilizing N-terminal residues are recognized by E3 ubiquitin ligases, termed N-recognins. A conserved structural domain called the UBR box is responsible for their specificity. Here we report the crystal structures of the UBR boxes of the human N-recognins UBR1 and UBR2, alone and in complex with an N-end rule peptide, Arg-Ile-Phe-Ser. These structures show that the UBR box adopts a previously undescribed fold stabilized through the binding of three zinc ions to form a binding pocket for type 1 N-degrons. NMR experiments reveal a preference for N-terminal arginine. Peptide binding is abrogated by N-terminal acetylation of the peptide or loss of the positive charge of the N-terminal residue. These results rationalize and refine the empirical rules for the classification of type 1 N-degrons. We also confirm that a missense mutation in UBR1 that is responsible for Johanson-Blizzard syndrome leads to UBR box unfolding and loss of function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global fold of the UBR boxes from UBR1 and UBR2.
Figure 2: Structure of the UBR box–N-degron complex.
Figure 3: UBR box binding of type 1 N-degrons.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  2. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  Google Scholar 

  3. Varshavsky, A. The N-end rule. Cold Spring Harb. Symp. Quant. Biol. 60, 461–478 (1995).

    Article  CAS  Google Scholar 

  4. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell 56, 1019–1032 (1989).

    Article  CAS  Google Scholar 

  5. Varshavsky, A. Discovery of cellular regulation by protein degradation. J. Biol. Chem. 283, 34469–34489 (2008).

    Article  CAS  Google Scholar 

  6. Tasaki, T. et al. Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. J. Biol. Chem. 282, 18510–18520 (2007).

    Article  CAS  Google Scholar 

  7. Tasaki, T. et al. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol. Cell. Biol. 25, 7120–7136 (2005).

    Article  CAS  Google Scholar 

  8. Tasaki, T. et al. The substrate recognition domains of the N-end rule pathway. J. Biol. Chem. 284, 1884–1895 (2009).

    Article  CAS  Google Scholar 

  9. Xia, Z. et al. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J. Biol. Chem. 283, 24011–24028 (2008).

    Article  CAS  Google Scholar 

  10. Hwang, C.S., Shemorry, A. & Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010).

    Article  CAS  Google Scholar 

  11. Johanson, A. & Blizzard, R. A syndrome of congenital aplasia of the alae nasi, deafness, hypothyroidism, dwarfism, absent permanent teeth, and malabsorption. J. Pediatr. 79, 982–987 (1971).

    Article  CAS  Google Scholar 

  12. Zenker, M. et al. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat. Genet. 37, 1345–1350 (2005).

    Article  CAS  Google Scholar 

  13. Kwon, Y.T., Xia, Z., Davydov, I.V., Lecker, S.H. & Varshavsky, A. Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3α) of the N-end rule pathway. Mol. Cell. Biol. 21, 8007–8021 (2001).

    Article  CAS  Google Scholar 

  14. Kwon, Y.T. et al. Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol. Cell. Biol. 23, 8255–8271 (2003).

    Article  CAS  Google Scholar 

  15. An, J.Y. et al. UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc. Natl. Acad. Sci. USA 107, 1912–1917 (2010).

    Article  CAS  Google Scholar 

  16. Ouyang, Y. et al. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair. Mutat. Res. 596, 64–75 (2006).

    Article  CAS  Google Scholar 

  17. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).

    Article  CAS  Google Scholar 

  18. de Groot, R.J., Rumenapf, T., Kuhn, R.J., Strauss, E.G. & Strauss, J.H. Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc. Natl. Acad. Sci. USA 88, 8967–8971 (1991).

    Article  CAS  Google Scholar 

  19. Levitt, M. & Perutz, M.F. Aromatic rings act as hydrogen bond acceptors. J. Mol. Biol. 201, 751–754 (1988).

    Article  CAS  Google Scholar 

  20. Tasaki, T. & Kwon, Y.T. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32, 520–528 (2007).

    Article  CAS  Google Scholar 

  21. Gil, P. et al. BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev. 15, 1985–1997 (2001).

    Article  CAS  Google Scholar 

  22. Kwon, Y.T. et al. An essential role of N-terminal arginylation in cardiovascular development. Science 297, 96–99 (2002).

    Article  CAS  Google Scholar 

  23. Brower, C.S. & Varshavsky, A. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS ONE 4, e7757 (2009).

    Article  Google Scholar 

  24. Graciet, E. et al. The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. Proc. Natl. Acad. Sci. USA 106, 13618–13623 (2009).

    Article  CAS  Google Scholar 

  25. Holman, T.J. et al. The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 4549–4554 (2009).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  28. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  29. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D Biol. Crystallogr. 55, 247–255 (1999).

    Article  CAS  Google Scholar 

  30. Winn, M.D., Murshudov, G.N. & Papiz, M.Z. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374, 300–321 (2003).

    Article  CAS  Google Scholar 

  31. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  32. Bartels, C., Xia, T.H., Billeter, M., Guntert, P. & Wuthrich, K. The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1–10 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.-F. Trempe and M. Ménade for technical assistance and helpful discussions. E.M.C. is funded by the Canadian Institutes of Health Research (CIHR) and McGill University. Data acquisition at the Macromolecular Diffraction (MacCHESS) facility at the Cornell High Energy Synchrotron Source (CHESS) was supported by US National Science Foundation award DMR 0225180 and US National Institutes of Health award RR-01646. This study was funded by CIHR grant MOP-14219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle Gehring.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3015 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matta-Camacho, E., Kozlov, G., Li, F. et al. Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat Struct Mol Biol 17, 1182–1187 (2010). https://doi.org/10.1038/nsmb.1894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing