Abstract
Aminoacyl-tRNA synthetase (aaRS) paralogs with unknown functions exist in various species. We now report novel 'protein lysylation' by an Escherichia coli lysyl-tRNA synthetase paralog, GenX/PoxA/YjeA. X-ray crystallographic analysis shows that the structure of the GenX protein resembles that of a class II aaRS. Further in vitro studies reveal that it specifically aminoacylates EF-P with lysine. The shape of the protein substrate mimics that of the L-shaped tRNA, and its lysylation site corresponds to the tRNA 3′ end. Thus, we show how the aaRS architecture can be adapted to achieve aminoacylation of a specific protein. Moreover, in vivo analyses reveal that the translation elongation factor P (EF-P) lysylation by GenX is enhanced by YjeK (lysine 2,3-aminomutase paralog), which is encoded next to the EF-P gene, and might convert α-lysyl–EF-P to β-lysyl–EF-P. In vivo analyses indicate that the EF-P modification by GenX and YjeK is essential for cell survival.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Two RmlC homologs catalyze dTDP-4-keto-6-deoxy-d-glucose epimerization in Pseudomonas putida KT2440
Scientific Reports Open Access 07 June 2021
-
New molecular insights into the tyrosyl-tRNA synthase inhibitors: CoMFA, CoMSIA analyses and molecular docking studies
Scientific Reports Open Access 14 September 2017
-
Proteobacteria explain significant functional variability in the human gut microbiome
Microbiome Open Access 23 March 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Schimmel, P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56, 125–158 (1987).
Ibba, M. & Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).
Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).
Cusack, S., Berthet-Colominas, C., Hartlein, M., Nassar, N. & Leberman, R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347, 249–255 (1990).
Roy, H., Becker, H.D., Reinbolt, J. & Kern, D. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism. Proc. Natl. Acad. Sci. USA 100, 9837–9842 (2003).
Sissler, M. et al. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc. Natl. Acad. Sci. USA 96, 8985–8990 (1999).
Artymiuk, P.J., Rice, D.W., Poirrette, A.R. & Willet, P. A tale of two synthetases. Nat. Struct. Biol. 1, 758 (1994).
Salazar, J.C., Ambrogelly, A., Crain, P.F., McCloskey, J.A. & Söll, D. A truncated aminoacyl-tRNA synthetase modifies RNA. Proc. Natl. Acad. Sci. USA 101, 7536–7541 (2004).
Dubois, D.Y. et al. An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. Proc. Natl. Acad. Sci. USA 101, 7530–7535 (2004).
Ahel, I., Korencic, D., Ibba, M. & Söll, D. Trans-editing of mischarged tRNAs. Proc. Natl. Acad. Sci. USA 100, 15422–15427 (2003).
An, S. & Musier-Forsyth, K. Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J. Biol. Chem. 41, 42359–42362 (2004).
Kong, L., Fromant, M., Blanquet, S. & Plateau, P. Evidence for a new Escherichia coli protein resembling a lysyl-tRNA synthetase. Gene 108, 163–164 (1991).
Kaniga, K., Compton, M.S., Curtiss, R. III & Sundaram, P. Molecular and functional characterization of Salmonella enterica serovar typhimurium poxA gene: effect on attenuation of virulence and protection. Infect. Immunol. 66, 5599–5606 (1998).
Peng, W.T., Banta, L.H., Charles, T.C. & Nester, E.W. The chvH locus of Agrobacterium encodes a homologue of an elongation factor involved in protein synthesis. J. Bacteriol. 183, 36–45 (2001).
Bailly, M. & de Crécy-Lagard, V. Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol. Direct 5, 3 (2010).
Kang, Y. et al. Systematic mutagenesis of the Escherichia coli genome. J. Bacteriol. 186, 4921–4930 (2004).
Hanawa-Suetsugu, K. et al. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc. Natl. Acad. Sci. USA 101, 9595–9600 (2004).
Blaha, G., Stanley, R.E. & Steitz, T.A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).
Glick, B.R. & Ganoza, M.C. Identification of a soluble protein that stimulates peptide bond synthesis. Proc. Natl. Acad. Sci. USA 72, 4257–4260 (1975).
Glick, B.R. & Ganoza, M.C. Peptide bond formation stimulated by protein synthesis factor EF-P depends on the aminoacyl moiety of the acceptor. Eur. J. Biochem. 97, 23–28 (1979).
Ganoza, M.C., Kiel, M.C. & Aoki, H. Evolutionary conservation of reactions in translation. Microbiol. Mol. Biol. Rev. 66, 460–485 (2002).
Eiler, S., Dock-Bregeon, A., Moulinier, L., Thierry, J.C. & Moras, D. Synthesis of aspartyl-tRNA(Asp) in Escherichia coli–a snapshot of the second step. EMBO J. 18, 6532–6541 (1999).
Aoki, H. et al. Interaction of elongation factor P with the Escherichia coli ribosome. FEBS J. 275, 671–681 (2008).
Saini, P., Eyler, D.E., Green, R. & Dever, T.E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).
Sasaki, K., Abid, M.R. & Miyazaki, M. Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae . FEBS Lett. 384, 151–154 (1996).
Park, M.H. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J. Biochem. 139, 161–169 (2006).
Wolff, E.C., Kang, K.R., Kim, Y.S. & Park, M.H. Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids 33, 341–350 (2007).
Smit-McBride, Z., Dever, T.E., Hershey, J.W. & Merrick, W.C. Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein. J. Biol. Chem. 264, 1578–1583 (1989).
Bartig, D., Lemkemeier, K., Frank, J., Lottspeich, F. & Klink, F. The archaebacterial hypusine-containing protein. Structural features suggest common ancestry with eukaryotic translation initiation factor 5A. Eur. J. Biochem. 204, 751–758 (1992).
Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).
Onesti, S., Miller, A.D. & Brick, P. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli . Structure 3, 163–176 (1995).
Desogus, G., Todone, F., Brick, P. & Onesti, S. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction. Biochemistry 39, 8418–8425 (2000).
Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 15, 6321–6334 (1996).
Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structure of the ternary complex of T. thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 15, 2834–2842 (1996).
Nozawa, K. et al. Pyrrolysyl-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457, 1163–1167 (2009).
Watanabe, K. et al. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449, 867–871 (2008).
Behshad, E. et al. Enantiomeric free radicals and enzymatic control of stereochemistry in a radical mechanism: the case of lysine 2,3-aminomutases. Biochemistry 45, 12639–12646 (2006).
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. published online 21 February 2006, doi:10.1038/msb4100050.
Rucker, R.B. & Wold, F. Cofactors in and as posttranslational protein modifications. FASEB J. 2, 2252–2261 (1988).
Reche, P. & Perham, R.N. Structure and selectivity in post-translational modification: attaching the biotinyl–lysine and lipoyl–lysine swinging arms in multifunctional enzymes. EMBO J. 18, 2673–2682 (1999).
Safro, M. & Mosyak, L. Structural similarities in the noncatalytic domains of phenylalanyl-tRNA and biotin synthetases. Protein Sci. 4, 2429–2432 (1995).
Xu, A. & Chen, K.Y. Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with postsystematic evolution of ligands by exponential enrichment RNA. J. Biol. Chem. 276, 2555–2561 (2001).
Wagner, S. & Klug, G. An archaeal protein with homology to the eukaryotic translation initiation factor 5A shows ribonucleolytic activity. J. Biol. Chem. 282, 13966–13976 (2007).
Nakamura, Y. & Ito, K. Making sense of mimic in translation termination. Trends Biochem. Sci. 28, 99–105 (2003).
Rawat, U.B. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87–90 (2003).
Klaholz, B.P. et al. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90–94 (2003).
Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266 (2005).
Wilson, D.N. et al. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24, 251–260 (2005).
Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat. Struct. Mol. Biol. 14, 733–737 (2007).
Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
Page, R.D. Visualizing phylogenetic trees using Treeview. Curr. Protoc. Bioimformatics Chapter 6, Unit 6.2 (2002).
Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).
Terwilliger, T.C. & Berendzen, J. SOLVE and RESOLVE: automated structure solution and density modification. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (2002).
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
Brünger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
Steiner, R.A., Lebedev, A.A. & Murshudov, G.N. Fisher's information in maximum-likelihood macromolecular crystallographic refinement. Acta Crystallogr. D Biol. Crystallogr. 59, 2114–2124 (2003).
Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).
Acknowledgements
We would like to thank the staff of beamline BL41XU at SPring-8 as well as the staff of the BL-5A and AR-NW12 beamlines at the Photon Factory, S. Sekine, T. Ito, R. Fukunaga and T. Sengoku for assisting with the data collection and the structure determination as well as for discussions, T. Kobayashi (RIKEN) for helpful discussions, M. Asanuma, N. Takeuchi, M. Yamaguchi-Hirafuji, A. Urushibata, R. Akasaka, T. Terada, M. Shirouzu and H. Hirota for MS, K. Takada (RIKEN) and C. Naoe (RIKEN) for the preparation of S30 extracts, ribosomes, tRNAfMet, methionyl-tRNA synthetase and methionyl–tRNAfMet formyltransferase, R. Nakajima (RIKEN), M. Aoki (RIKEN), J. Adachi (RIKEN), N. Ohsawa (RIKEN), K. Katsura (RIKEN), T. Terada (RIKEN) and M. Shirouzu (RIKEN) for the E. coli cell-free protein synthesis system, A. Arakawa, T. Kasai and T. Kigawa for assisting with the ITC analysis, K. Yutani for the DSC analysis and A. Ishii and T. Nakayama for clerical assistance. We are grateful to the National BioResource Project (National Institute of Genetics, Japan) for providing the strains from the Keio collection. This work was supported in part by Grants-in-Aid for Scientific Research in Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Targeted Proteins Research Program and the RIKEN Structural Genomics/Proteomics Initiative (RSGI) in the National Project on Protein Structural and Functional Analyses, Ministry of Education, Culture, Sports, Science and Technology of Japan.
Author information
Authors and Affiliations
Contributions
T.S. performed the crystallographic experiments and the structural analysis; T.Y. performed the biochemical experiments and the structural analysis; R.I. assisted with the structural analysis; T.S., T.Y., R.I., C.T. and S.Y. interpreted the experiments and wrote the manuscript; T.Y. and S.Y. designed the studies.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–10 (PDF 2709 kb)
Rights and permissions
About this article
Cite this article
Yanagisawa, T., Sumida, T., Ishii, R. et al. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol Biol 17, 1136–1143 (2010). https://doi.org/10.1038/nsmb.1889
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nsmb.1889
This article is cited by
-
Two RmlC homologs catalyze dTDP-4-keto-6-deoxy-d-glucose epimerization in Pseudomonas putida KT2440
Scientific Reports (2021)
-
ANKRD16 prevents neuron loss caused by an editing-defective tRNA synthetase
Nature (2018)
-
Structural basis of protein arginine rhamnosylation by glycosyltransferase EarP
Nature Chemical Biology (2018)
-
Proteobacteria explain significant functional variability in the human gut microbiome
Microbiome (2017)
-
New molecular insights into the tyrosyl-tRNA synthase inhibitors: CoMFA, CoMSIA analyses and molecular docking studies
Scientific Reports (2017)