Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB

Abstract

To gain global insights into the role of the well-known repressive splicing regulator PTB, we analyzed the consequences of PTB knockdown in HeLa cells using high-density oligonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB-repressed and PTB-activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTB-activated exon to a PTB-repressed exon. Our results show that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microarray analysis of PTB/nPTB targets in Hela cells.
Figure 2: PTB regulation of mutually exclusive exons.
Figure 3: Tissue specificity of PTB-regulated exons.
Figure 4: Motifs associated with PTB-repressed exons.
Figure 5: Motifs associated with PTB-activated exons.
Figure 6: PTB acts via an ESS.
Figure 7: PTB promotes exon inclusion via an ISE.
Figure 8: MS2 recruitment to downstream intron reveals PTB minimal activation domain.
Figure 9: Position-dependent PTB mode of action.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Chen, M. & Manley, J.L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741–754 (2009).

    Article  CAS  Google Scholar 

  2. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  3. Blencowe, B.J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).

    Article  CAS  Google Scholar 

  4. Wang, Z. & Burge, C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  Google Scholar 

  5. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53–59 (2010).

    Article  CAS  Google Scholar 

  6. Castle, J.C. et al. Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat. Genet. 40, 1416–1425 (2008).

    Article  CAS  Google Scholar 

  7. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl. Acad. Sci. USA 105, 20333–20338 (2008).

    Article  CAS  Google Scholar 

  8. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  Google Scholar 

  9. Wagner, E.J. & Garcia-Blanco, M.A. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell. Biol. 21, 3281–3288 (2001).

    Article  CAS  Google Scholar 

  10. Spellman, R. & Smith, C.W. Novel modes of splicing repression by PTB. Trends Biochem. Sci. 31, 73–76 (2006).

    Article  CAS  Google Scholar 

  11. Sawicka, K., Bushell, M., Spriggs, K.A. & Willis, A.E. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. Trans. 36, 641–647 (2008).

    Article  CAS  Google Scholar 

  12. Oberstrass, F.C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054–2057 (2005).

    Article  CAS  Google Scholar 

  13. Perez, I., McAfee, J.G. & Patton, J.G. Multiple RRMs contribute to RNA binding specificity and affinity for polypyrimidine tract binding protein. Biochemistry 36, 11881–11890 (1997).

    Article  CAS  Google Scholar 

  14. Reid, D.C. et al. Next-generation SELEX identifies sequence and structural determinants of splicing factor binding in human pre-mRNA sequence. RNA 15, 2385–2397 (2009).

    Article  CAS  Google Scholar 

  15. Amir-Ahmady, B., Boutz, P.L., Markovtsov, V., Phillips, M.L. & Black, D.L. Exon repression by polypyrimidine tract binding protein. RNA 11, 699–716 (2005).

    Article  CAS  Google Scholar 

  16. Ashiya, M. & Grabowski, P.J. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA 3, 996–1015 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gooding, C., Roberts, G.C. & Smith, C.W. Role of an inhibitory pyrimidine element and polypyrimidine tract binding protein in repression of a regulated α-tropomyosin exon. RNA 4, 85–100 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Perez, I., Lin, C.H., McAfee, J.G. & Patton, J.G. Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo . RNA 3, 764–778 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin, C.H. & Patton, J.G. Regulation of alternative 3′ splice site selection by constitutive splicing factors. RNA 1, 234–245 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh, R., Valcarcel, J. & Green, M.R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268, 1173–1176 (1995).

    Article  CAS  Google Scholar 

  21. Izquierdo, J.M. et al. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol. Cell 19, 475–484 (2005).

    Article  CAS  Google Scholar 

  22. Sharma, S., Falick, A.M. & Black, D.L. Polypyrimidine tract binding protein blocks the 5′ splice site-dependent assembly of U2AF and the prespliceosomal E complex. Mol. Cell 19, 485–496 (2005).

    Article  CAS  Google Scholar 

  23. Sharma, S., Kohlstaedt, L.A., Damianov, A., Rio, D.C. & Black, D.L. Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat. Struct. Mol. Biol. 15, 183–191 (2008).

    Article  CAS  Google Scholar 

  24. Chou, M.Y., Underwood, J.G., Nikolic, J., Luu, M.H. & Black, D.L. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol. Cell 5, 949–957 (2000).

    Article  CAS  Google Scholar 

  25. Matlin, A.J., Southby, J., Gooding, C. & Smith, C.W. Repression of α-actinin SM exon splicing by assisted binding of PTB to the polypyrimidine tract. RNA 13, 1214–1223 (2007).

    Article  CAS  Google Scholar 

  26. Robinson, F. & Smith, C.W. A splicing repressor domain in polypyrimidine tract-binding protein. J. Biol. Chem. 281, 800–806 (2006).

    Article  CAS  Google Scholar 

  27. Boutz, P.L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).

    Article  CAS  Google Scholar 

  28. Xing, Y. et al. MADS: a new and improved method for analysis of differential alternative splicing by exon-tiling microarrays. RNA 14, 1470–1479 (2008).

    Article  CAS  Google Scholar 

  29. Lou, H., Helfman, D.M., Gagel, R.F. & Berget, S.M. Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terminal exon. Mol. Cell. Biol. 19, 78–85 (1999).

    Article  CAS  Google Scholar 

  30. Paradis, C. et al. hnRNP I/PTB can antagonize the splicing repressor activity of SRp30c. RNA 13, 1287–1300 (2007).

    Article  CAS  Google Scholar 

  31. Xue, Y. et al. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell 36, 996–1006 (2009).

    Article  CAS  Google Scholar 

  32. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  Google Scholar 

  33. Venables, J.P. et al. Cancer-associated regulation of alternative splicing. Nat. Struct. Mol. Biol. 16, 670–676 (2009).

    Article  CAS  Google Scholar 

  34. Yeo, G.W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  Google Scholar 

  35. Zhang, C. et al. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev. 22, 2550–2563 (2008).

    Article  CAS  Google Scholar 

  36. Du, H. et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat. Struct. Mol. Biol. 17, 187–193 (2010).

    Article  CAS  Google Scholar 

  37. Spellman, R., Llorian, M. & Smith, C.W. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol. Cell 27, 420–434 (2007).

    Article  CAS  Google Scholar 

  38. Yamamoto, M.L. et al. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis. Blood 113, 3363–3370 (2009).

    Article  CAS  Google Scholar 

  39. Clark, T.A. et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol. 8, R64 (2007).

    Article  Google Scholar 

  40. Smith, C.W. Alternative splicing–when two's a crowd. Cell 123, 1–3 (2005).

    Article  CAS  Google Scholar 

  41. Mendell, J.T., ap Rhys, C.M. & Dietz, H.C. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419–422 (2002).

    Article  CAS  Google Scholar 

  42. Mi, H., Guo, N., Kejariwal, A. & Thomas, P.D. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res. 35, D247–D252 (2007).

    Article  CAS  Google Scholar 

  43. Makeyev, E.V., Zhang, J., Carrasco, M.A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007).

    Article  CAS  Google Scholar 

  44. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844–852 (2005).

    Article  CAS  Google Scholar 

  45. Christofk, H.R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  Google Scholar 

  46. Thorsen, K. et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol. Cell. Proteomics 7, 1214–1224 (2008).

    Article  CAS  Google Scholar 

  47. He, X. et al. Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro . Oncogene 26, 4961–4968 (2007).

    Article  CAS  Google Scholar 

  48. Wang, C. et al. Polypyrimidine tract-binding protein (PTB) differentially affects malignancy in a cell line-dependent manner. J. Biol. Chem. 283, 20277–20287 (2008).

    Article  CAS  Google Scholar 

  49. David, C.J., Chen, M., Assanah, M., Cannoll, P. & Manley, J.L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010).

    Article  CAS  Google Scholar 

  50. Gooding, C. et al. A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones. Genome Biol. 7, R1 (2006).

    Article  Google Scholar 

  51. Goers, E.S., Purcell, J., Voelker, R.B., Gates, D.P. & Berglund, J.A. MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing. Nucleic Acids Res. 38, 2467–2484 (2010).

    Article  CAS  Google Scholar 

  52. Jin, Y. et al. A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22, 905–912 (2003).

    Article  CAS  Google Scholar 

  53. Faustino, N.A. & Cooper, T.A. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol. Cell. Biol. 25, 879–887 (2005).

    Article  CAS  Google Scholar 

  54. Goren, A. et al. Comparative analysis identifies exonic splicing regulatory sequences–the complex definition of enhancers and silencers. Mol. Cell 22, 769–781 (2006).

    Article  CAS  Google Scholar 

  55. Wagner, E.J. & Garcia-Blanco, M.A. RNAi-mediated PTB depletion leads to enhanced exon definition. Mol. Cell 10, 943–949 (2002).

    Article  CAS  Google Scholar 

  56. Del Gatto-Konczak, F., Olive, M., Gesnel, M.C. & Breathnach, R. hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol. Cell. Biol. 19, 251–260 (1999).

    Article  CAS  Google Scholar 

  57. Venables, J.P. Downstream intronic splicing enhancers. FEBS Lett. 581, 4127–4131 (2007).

    Article  CAS  Google Scholar 

  58. Forch, P., Puig, O., Martinez, C., Seraphin, B. & Valcarcel, J. The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5′ splice sites. EMBO J. 21, 6882–6892 (2002).

    Article  Google Scholar 

  59. Rideau, A.P. et al. A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain. Nat. Struct. Mol. Biol. 13, 839–848 (2006).

    Article  CAS  Google Scholar 

  60. Wollerton, M.C., Gooding, C., Wagner, E.J., Garcia-Blanco, M.A. & Smith, C.W. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

    Article  CAS  Google Scholar 

  61. Coles, J.L., Hallegger, M. & Smith, C.W. A nonsense exon in the Tpm1 gene is silenced by hnRNP H and F. RNA 15, 33–43 (2009).

    Article  CAS  Google Scholar 

  62. Hunt, S.L. & Jackson, R.J. Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 5, 344–359 (1999).

    Article  CAS  Google Scholar 

  63. Ellis, P.D., Smith, C.W. & Kemp, P. Regulated tissue-specific alternative splicing of enhanced green fluorescent protein transgenes conferred by α-tropomyosin regulatory elements in transgenic mice. J. Biol. Chem. 279, 36660–36669 (2004).

    Article  CAS  Google Scholar 

  64. Schwartz, S. et al. Alu exonization events reveal features required for precise recognition of exons by the splicing machinery. PLOS Comput. Biol. 5, e1000300 (2009).

    Article  Google Scholar 

  65. Shapiro, M.B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174 (1987).

    Article  CAS  Google Scholar 

  66. Carmel, I., Tal, S., Vig, I. & Ast, G. Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 10, 828–840 (2004).

    Article  CAS  Google Scholar 

  67. Yeo, G. & Burge, C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).

    Article  CAS  Google Scholar 

  68. Schwartz, S.H. et al. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res. 18, 88–103 (2008).

    Article  CAS  Google Scholar 

  69. Bembom, O. seqLogo: an R package for plotting DNA sequence logos. (2007).

  70. R Development Core Team. R: a language and environment for statistical computing. (2009).

Download references

Acknowledgements

We thank M. Hallegger, N. McGlincy and J. Ule for comments on the manuscript. This work was supported by a Wellcome Trust programme grant to C.W.J.S. (077877) and European Commission grant EURASNET-LSHG-CT-2005-518238 (C.W.J.S. and G.A.). G.A. is supported by grants from the Israel Science Foundation (ISF 61/09), Joint Germany-Israeli Research Program (ca-139), Deutsche-Israel Project (DIP MI-1317), the Israel Cancer Association and the Israel Cancer Research Foundation (ICRF). P.G. was supported by the Association Française contre les Myopathies and European Commission grant EURASNET-LSHG-CT-2005-518238. S.S. and D.H. are fellows of the Edmond J. Safra bioinformatics program at Tel Aviv University. This work was performed in partial fulfillment of the requirements for a PhD degree of S.S. and D.H., Sackler Faculty of Medicine, Tel Aviv University, Israel.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and R.S. prepared materials for array analyses; T.A.C. and A.C.S. carried out the array analyses; M.L., L.-Y.T. and A.G. validated array predictions; S.S., D.H., P.G. and G.A. carried out bioinformatic analyses; M.L. carried out all other wet experimental work; M.L., S.S. and C.W.J.S. wrote the manuscript with input from other authors; C.W.J.S. conceived the project and coordinated the collaborations with important input from G.A., M.L., S.S. and T.A.C.

Corresponding author

Correspondence to Christopher W J Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1, Supplementary Data 1 and 2 (PDF 917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llorian, M., Schwartz, S., Clark, T. et al. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol 17, 1114–1123 (2010). https://doi.org/10.1038/nsmb.1881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing