Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hybrid molecular structure of the giant protease tripeptidyl peptidase II

Abstract

Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6 MDa). It is believed to act downstream of the 26S proteasome, cleaving tripeptides from the N termini of longer peptides, and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach. We solved the structure of the dimer by X-ray crystallography and docked it into the three-dimensional map of the holocomplex, which we obtained by single-particle cryo–electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active-site serine, coupling it to holocomplex assembly and active-site sequestration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the TPP II dimer.
Figure 2: Stereo view of the substrate-binding cleft.
Figure 3: Active-site region of subtilisin and TPP II dimer.
Figure 4: Hybrid model of the TPP II spindle.
Figure 5: Density at the dimer-dimer contact region and the relocation of loop L2.
Figure 6: Chamber system of TPP II and pathways to the active sites.
Figure 7: Schematic diagram of the proposed assembly-dependent activation mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Electron Microscopy Data Bank

Protein Data Bank

References

  1. Yao, T. & Cohen, R.E. Giant proteases: beyond the proteasome. Curr. Biol. 9, R551–R553 (1999).

    Article  CAS  Google Scholar 

  2. Tamura, T. et al. Tricorn protease—the core of a modular proteolytic system. Science 274, 1385–1389 (1996).

    Article  CAS  Google Scholar 

  3. Tamura, N., Lottspeich, F., Baumeister, W. & Tamura, T. The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation. Cell 95, 637–648 (1998).

    Article  CAS  Google Scholar 

  4. Brandstetter, H., Kim, J., Groll, M. & Huber, R. Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414, 466–470 (2001).

    Article  CAS  Google Scholar 

  5. Walz, J., Tamura, T., Tamura, N., Grimm, R. & Baumeister, W. Tricorn protease exists as an icosahedral supermolecule in vivo. Mol. Cell 1, 59–65 (1997).

    Article  CAS  Google Scholar 

  6. Tomkinson, B. Tripeptidyl peptidases: enzymes that count. Trends Biochem. Sci. 24, 355–359 (1999).

    Article  CAS  Google Scholar 

  7. Reits, E. et al. A major role for TPP II in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity 20, 495–506 (2004).

    Article  CAS  Google Scholar 

  8. York, I.A., Bhutani, N., Zendzian, S., Goldberg, A.L. & Rock, K.L. Tripeptidyl peptidase II (TPPII) is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. J. Immunol. 177, 1434–1443 (2006).

    Article  CAS  Google Scholar 

  9. Firat, E. et al. Analysis of direct and cross-presentation of antigens in TPPII knockout mice. J. Immunol. 179, 8137–8145 (2007).

    Article  CAS  Google Scholar 

  10. Endert, P. Role of tripeptidyl peptidase II in MHC class I antigen processing—the end of controversies? Eur. J. Immunol. 38, 609–613 (2008).

    Article  Google Scholar 

  11. Kawahara, M. et al. Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo. J. Immunol. 183, 6069–6077 (2009).

    Article  CAS  Google Scholar 

  12. Hasselgren, P.O. Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem. Biophys. Res. Commun. 290, 1–10 (2002).

    Article  CAS  Google Scholar 

  13. Stavropoulou, V., Vasquez, V., Cereser, B., Freda, E. & Masucci, M.G. TPPII promotes genetic instability by allowing the escape from apoptosis of cells with activated mitotic checkpoints. Biochem. Biophys. Res. Commun. 346, 415–425 (2006).

    Article  CAS  Google Scholar 

  14. Huai, J. et al. Activation of cellular death programs associated with immunosenescence-like phenotype in TPPII knockout mice. Proc. Natl. Acad. Sci. USA 105, 5177–5182 (2008).

    Article  CAS  Google Scholar 

  15. Rose, C. et al. Characterization and inhibition of a cholecystokinin-inactivating serine peptidase. Nature 380, 403–409 (1996).

    Article  CAS  Google Scholar 

  16. McKay, R.M., McKay, J.P., Suh, J.M., Avery, L. & Graff, J.M. Tripeptidyl peptidase II promotes fat formation in a conserved fashion. EMBO J. 8, 1183–1189 (2007).

    Article  CAS  Google Scholar 

  17. Rockel, B. et al. Molecular architecture and assembly of Drosophila tripeptidyl peptidase II. Proc. Natl. Acad. Sci. USA 102, 10135–10140 (2005).

    Article  CAS  Google Scholar 

  18. Seyit, G., Rockel, B., Baumeister, W. & Peters, J. Size matters for the tripeptidase II complex from Drosophila: the 6-MDa spindle form stabilizes the activated state. J. Biol. Chem. 281, 25723–25733 (2006).

    Article  CAS  Google Scholar 

  19. Steitz, T.A. & Shulman, R.G. Crystallographic and NMR studies of the serine proteases. Annu. Rev. Biophys. Bioeng. 11, 419–444 (1982).

    Article  CAS  Google Scholar 

  20. Bode, W., Papamokos, E., Musil, D., Seemueller, U. & Fritz, H. Refined 1.2 Å crystal structure of the complex formed between subtilisin Carlsberg and the inhibitor eglin c. Molecular structure of eglin and its detailed interaction with subtilisin. EMBO J. 5, 813–818 (1986).

    Article  CAS  Google Scholar 

  21. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  Google Scholar 

  22. Engel, M. et al. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc. Natl. Acad. Sci. USA 100, 5063–5068 (2003).

    Article  CAS  Google Scholar 

  23. Goettig, P. et al. X-ray snapshots of peptide processing in mutants of tricorn–interacting factor F1 from Thermoplasma. J. Biol. Chem. 280, 33387–33396 (2005).

    Article  CAS  Google Scholar 

  24. Ito, K. et al. Crystal structure and mechanism of tripeptidyl activity of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis. J. Mol. Biol. 362, 228–240 (2006).

    Article  CAS  Google Scholar 

  25. Xu, Y. et al. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism. J. Mol. Biol. 375, 708–719 (2008).

    Article  CAS  Google Scholar 

  26. Rao, S.N., Singh, U.C., Bash, P.A. & Kollman, P.A. Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin. Nature 328, 551–554 (1987).

    Article  CAS  Google Scholar 

  27. Bryan, P., Pantoliano, M.W., Quill, S.G., Hsiao, H.Y. & Poulos, T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Natl. Acad. Sci. USA 83, 3743–3745 (1986).

    Article  CAS  Google Scholar 

  28. Wells, J.A., Cunningham, B.C., Graycar, T.P. & Estell, D.A. Importance of hydrogen-bond formation in stabilizing the transition state of subtilisin. Phil. Trans. R. Soc. Lond. A 317, 415–423 (1986).

    Article  CAS  Google Scholar 

  29. Carter, P. & Wells, J.A. Functional interaction among catalytic residues in subtilisin BPN′. Proteins 7, 335–342 (1990).

    Article  CAS  Google Scholar 

  30. Guhaniyogi, J., Sohar, I., Das, K., Stock, A.M. & Lobel, P. Crystal structure and autoactivation pathway of the precursor form of human tripeptidyl-peptidase 1, the enzyme deficient in late infantile ceroid lipofuscinosis. J. Biol. Chem. 284, 3985–3997 (2009).

    Article  CAS  Google Scholar 

  31. Geier, E. et al. A giant protease with potential to substitute for some functions of the proteasome. Science 283, 978–981 (1999).

    Article  CAS  Google Scholar 

  32. Ito, K. et al. Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition. J. Biol. Chem. 281, 33664–33676 (2006).

    Article  CAS  Google Scholar 

  33. Lindås, A.-C., Eriksson, S., Jozsa, E. & Tomkinson, B. Investigation of a role for Glu-305 and Glu-331 in substrate binding of tripeptidyl-peptidase II. Biochim. Biophys. Acta 1784, 1899–1907 (2008).

    Article  Google Scholar 

  34. Löwe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  Google Scholar 

  35. Bode, W., Papamokos, E. & Musil, D. The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Structural analysis, subtilisin structure and interface geometry. Eur. J. Biochem. 166, 673–692 (1987).

    Article  CAS  Google Scholar 

  36. DeLano, W.L. The PyMOL Molecular Graphics System (2002) DeLano Scientific, Palo Alto, CA, USA <http://www.pymol.org>.

  37. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  39. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  40. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  41. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK—A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  42. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  43. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Diffraction datasets for the structure determination were collected at Beamline 8.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory. We would like to thank C. Ralston and her beamline staff for their assistance. We thank A. Sonnen for the calculation of the contact areas. This work is supported by funding from the Deutsche Forschungsgemeinschaft (B.R.), the National Institutes of Health (B.K.J.) and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

W.B. and B.K.J. conceived the project; X-ray crystallography work, from purification to final structure, was conducted by C.K.C. under the guidance of B.K.J.; P.J.W. was involved in data collection and processing and P.H.Z. in initial processing of data; G.S. and J.P. were involved with initial purification and crystallization trials; electron microscopy structural studies were performed by B.R.; A.-M.S. and J.P. performed mutation and functional studies; the manuscript was written by C.K.C., B.R., J.P., B.K.J. and W.B.; All authors read and edited the manuscript.

Corresponding authors

Correspondence to Wolfgang Baumeister or Bing K Jap.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1 and 2, Supplementary Methods (PDF 8659 kb)

Supplementary Video 1

Rotation about the spindle axis of two dimers docked into the central part of the TPP II envelope. The color–coding for the dimers is the same as used for Figure 1: yellow, subtilisin domain (residues 1–522); red, active site residues (Asp44, His272, Ser462, Asn374); orange, insert (residues 75–266); green, central domain (residues 523–1098); blue, C–terminal domain (residues 1099–1354); the adjoining monomers are shown in a lighter shade of the same color scheme. (MOV 3620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, C., Rockel, B., Seyit, G. et al. Hybrid molecular structure of the giant protease tripeptidyl peptidase II. Nat Struct Mol Biol 17, 990–996 (2010). https://doi.org/10.1038/nsmb.1870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing