Brief Communication | Published:

Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain

Nature Structural & Molecular Biology volume 17, pages 10271029 (2010) | Download Citation

Abstract

MSL3 resides in the MSL (male-specific lethal) complex, which upregulates transcription by spreading the histone H4 Lys16 (H4K16) acetyl mark. We discovered a DNA-dependent interaction of MSL3 chromodomain with the H4K20 monomethyl mark. The structure of a ternary complex shows that the DNA minor groove accommodates the histone H4 tail, and monomethyllysine inserts in a four-residue aromatic cage in MSL3. H4K16 acetylation antagonizes MSL3 binding, suggesting that MSL function is regulated by a combination of post-translational modifications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Referenced accessions

References

  1. 1.

    et al. Cell 134, 599–609 (2008).

  2. 2.

    , , , & PLoS Genet. 4, e1000302 (2008).

  3. 3.

    et al. Mol. Cell. Biol. 25, 9175–9188 (2005).

  4. 4.

    , , , & Mol. Cell 36, 290–301 (2009).

  5. 5.

    Curr. Opin. Genet. Dev. 19, 550–556 (2009).

  6. 6.

    , & Nature 407, 405–409 (2000).

  7. 7.

    et al. J. Biol. Chem. 280, 32326–32331 (2005).

  8. 8.

    et al. Nat. Struct. Mol. Biol. 15, 1318–1325 (2008).

  9. 9.

    , & EMBO Rep. 7, 531–538 (2006).

  10. 10.

    & Science 295, 2080–2083 (2002).

  11. 11.

    et al. EMBO Rep. 7, 397–403 (2006).

  12. 12.

    et al. Nature 456, 350–356 (2008).

  13. 13.

    & Biochem. Cell Biol. 87, 151–161 (2009).

  14. 14.

    et al. Mol. Cell 9, 1201–1213 (2002).

  15. 15.

    et al. Nature 392, 202–205 (1998).

  16. 16.

    et al. Nature 438, 1181–1185 (2005).

  17. 17.

    , & Cell 128, 707–719 (2007).

  18. 18.

    et al. Cell 129, 823–837 (2007).

  19. 19.

    & Cell Cycle 7, 578–585 (2008).

  20. 20.

    , , & Nature 436, 138–141 (2005).

Download references

Acknowledgements

We thank K. Clines and M. Chruszcz for technical support and T. Conrad and A. Akhtar for initiating biological investigations. This work was supported by grants from the US National Institutes of Health (GM070558) and the American Heart Association (0740058N) to S.K.

Author information

Affiliations

  1. Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia, USA.

    • Daesung Kim
    • , Bartlomiej J Blus
    • , Fraydoon Rastinejad
    •  & Sepideh Khorasanizadeh
  2. Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia, USA.

    • Vikas Chandra
    • , Pengxiang Huang
    •  & Fraydoon Rastinejad
  3. Center for Molecular Design, University of Virginia Health System, Charlottesville, Virginia, USA.

    • Fraydoon Rastinejad

Authors

  1. Search for Daesung Kim in:

  2. Search for Bartlomiej J Blus in:

  3. Search for Vikas Chandra in:

  4. Search for Pengxiang Huang in:

  5. Search for Fraydoon Rastinejad in:

  6. Search for Sepideh Khorasanizadeh in:

Contributions

D.K., B.J.B. and S.K. designed, performed and analyzed experiments; V.C. assisted with DNA purification and mutagenesis; F.R. and P.H. assisted with crystallography; B.J.B. and S.K. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Sepideh Khorasanizadeh.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Methods, Supplementary Tables 1 and 2 and Supplementary Figures 1–4

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nsmb.1856

Further reading