Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Determinants of structural and functional plasticity of a widely conserved protease chaperone complex

Abstract

Channeling of misfolded proteins into repair, assembly or degradation pathways is often mediated by complex and multifunctional cellular factors. Despite detailed structural information, the underlying regulatory mechanisms governing these factors are not well understood. The extracytoplasmic heat-shock factor DegP (HtrA) is a well-suited model for addressing mechanistic issues, as it is regulated by the common mechanisms of allostery and activation by oligomerization. Site-directed mutagenesis combined with refolding and oligomerization studies of chemically denatured DegP revealed how substrates trigger the conversion of the resting conformation into the active conformation. Binding of specific peptides to PDZ domain-1 causes a local rearrangement that is allosterically transmitted to the substrate-binding pocket of the protease domain. This activated state readily assembles into larger oligomeric particles, thus stabilizing the catalytically active form and providing a degradation cavity for protein substrates. The implications of these data for the mechanism of protein quality control are discussed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Characterization of refolding and activation of DegP.
Figure 2: Effects of peptides on the switch in oligomeric states of refolded DegP.
Figure 3: Elements of DegP subjected to mutational analyses.
Figure 4: Effects of point mutations in PDZ domain-1.
Figure 5: Effects of point mutations in loop L2.
Figure 6: Effects of point mutations in loop L3.
Figure 7: Model of DegP activation by oligomerization.

References

  1. Kolmar, H., Waller, P. & Sauer, R. The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J. Bacteriol. 178, 5925–5929 (1996).

    Article  CAS  Google Scholar 

  2. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

    Article  CAS  Google Scholar 

  3. Meltzer, M. et al. Allosteric activation of HtrA protease DegP by stress signals during bacterial protein quality control. Angew. Chem. Int. Edn. Engl. 47, 1332–1334 (2008).

    Article  CAS  Google Scholar 

  4. Krojer, T. et al. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl. Acad. Sci. USA 105, 7702–7707 (2008).

    Article  CAS  Google Scholar 

  5. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    Article  CAS  Google Scholar 

  6. Jiang, J. et al. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc. Natl. Acad. Sci. USA 105, 11939–11944 (2008).

    Article  CAS  Google Scholar 

  7. Clausen, T., Southan, C. & Ehrmann, M. The HtrA family of proteases. Implications for protein composition and cell fate. Mol. Cell 10, 443–455 (2002).

    Article  CAS  Google Scholar 

  8. Page, M.J. & Di Cera, E. Evolution of peptidase diversity. J. Biol. Chem. 283, 30010–30014 (2008).

    Article  CAS  Google Scholar 

  9. Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. & Clausen, T. Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease domain. Cell 117, 483–494 (2004).

    Article  CAS  Google Scholar 

  10. Murwantoko et al. Binding of proteins to the PDZ domain regulates proteolytic activity of HtrA1 serine protease. Biochem. J. 381, 895–904 (2004).

    Article  CAS  Google Scholar 

  11. Gupta, S. et al. The carboxy terminal tail of presenilin regulates Omi/HtrA2 protease activity. J. Biol. Chem. 279, 45844–45854 (2004).

    Article  CAS  Google Scholar 

  12. Iwanczyk, J. et al. Role of the PDZ domains in Escherichia coli DegP protein. J. Bacteriol. 189, 3176–3186 (2007).

    Article  CAS  Google Scholar 

  13. Hasselblatt, H. et al. Regulation of the sE stress response by DegS: how the PDZ domain keeps the protease inactive in the resting state and allows integration of different OMP-derived stress signals upon folding stress. Genes Dev. 21, 2659–2670 (2007).

    Article  CAS  Google Scholar 

  14. Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

    Article  CAS  Google Scholar 

  15. Shen, Q.T. et al. Bowl-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control. Proc. Natl. Acad. Sci. USA 106, 4858–4863 (2009).

    Article  CAS  Google Scholar 

  16. Meltzer, M. et al. Structure, function and regulation of the conserved serine proteases DegP and DegS of Escherichia coli. Res. Microbiol. 160, 660–666 (2009).

    Article  CAS  Google Scholar 

  17. Ortega, J., Iwanczyk, J. & Jomaa, A. Escherichia coli DegP: a structure-driven functional model. J. Bacteriol. 191, 4705–4713 (2009).

    Article  CAS  Google Scholar 

  18. Hauske, P. et al. Selectivity profiling of DegP substrates and inhibitors. Bioorg. Med. Chem. 17, 2920–2924 (2009).

    Article  CAS  Google Scholar 

  19. Perona, J.J. & Craik, C.S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337–360 (1995).

    Article  CAS  Google Scholar 

  20. Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 102, 4501–4524 (2002).

    Article  CAS  Google Scholar 

  21. Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007).

    Article  CAS  Google Scholar 

  22. Hauske, P., Ottmann, C., Meltzer, M., Ehrmann, M. & Kaiser, M. Allosteric regulation of proteases. ChemBioChem 9, 2920–2928 (2008).

    Article  CAS  Google Scholar 

  23. Heink, S., Ludwig, D., Kloetzel, P.M. & Kruger, E. IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc. Natl. Acad. Sci. USA 102, 9241–9246 (2005).

    Article  CAS  Google Scholar 

  24. Kirstein, J., Moliere, N., Dougan, D.A. & Turgay, K. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat. Rev. Microbiol. 7, 589–599 (2009).

    Article  CAS  Google Scholar 

  25. Korennykh, A.V. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 457, 687–693 (2009).

    Article  CAS  Google Scholar 

  26. Milner, J.M., Patel, A. & Rowan, A.D. Emerging roles of serine proteinases in tissue turnover in arthritis. Arthritis Rheum. 58, 3644–3656 (2008).

    Article  CAS  Google Scholar 

  27. Chien, J., Campioni, M., Shridhar, V. & Baldi, A. HtrA serine proteases as potential therapeutic targets in cancer. Curr. Cancer Drug Targets 9, 451–468 (2009).

    Article  CAS  Google Scholar 

  28. Hara, K. et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N. Engl. J. Med. 360, 1729–1739 (2009).

    Article  CAS  Google Scholar 

  29. Vande Walle, L., Lamkanfi, M. & Vandenabeele, P. The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ. 15, 453–460 (2008).

    Article  CAS  Google Scholar 

  30. Grau, S. et al. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc. Natl. Acad. Sci. USA 102, 6021–6026 (2005).

    Article  CAS  Google Scholar 

  31. Harnasch, M. et al. Bacterial expression and two-hybrid systems for human membrane proteins: characterisation of presenilin/amyloid precursor interaction. Mol. Membr. Biol. 21, 373–383 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.E. was supported by Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

M. Merdanovic, N.M., M. Meltzer, S.P., A.A., R.M., P.H. and L.N.-S. performed the experiments; A.R.C., M.K., R.H. and M.E. planned the work and wrote the paper.

Corresponding author

Correspondence to Michael Ehrmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Note (PDF 364 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Merdanovic, M., Mamant, N., Meltzer, M. et al. Determinants of structural and functional plasticity of a widely conserved protease chaperone complex. Nat Struct Mol Biol 17, 837–843 (2010). https://doi.org/10.1038/nsmb.1839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing