Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking

Abstract

The plasma membrane delimits the cell and controls material and information exchange between itself and the environment. How different plasma-membrane processes are coordinated and how the relative abundance of plasma-membrane lipids and proteins is homeostatically maintained are not yet understood. Here, we used a quantitative genetic interaction map, or E-MAP, to functionally interrogate a set of 400 genes involved in various aspects of plasma-membrane biology, including endocytosis, signaling, lipid metabolism and eisosome function. From this E-MAP, we derived a set of 57,799 individual interactions between genes functioning in these various processes. Using triplet genetic motif analysis, we identified a new component of the eisosome, Eis1, and linked the poorly characterized gene EMP70 to endocytic and eisosome function. Finally, we implicated Rom2, a GDP/GTP exchange factor for Rho1 and Rho2, in the regulation of sphingolipid metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition of the plasma membrane E-MAP.
Figure 2: Overview of the clustergram of the plasma membrane E-MAP.
Figure 3: TGMs of the plasma membrane E-MAP.
Figure 4: YMR031C/EIS1 encodes an eisosome component.
Figure 5: The eisosome-linked Emp70 is an early endosomal protein.
Figure 6: Emp70 is required for normal endosome function.
Figure 7: Genetic interactions of sphingolipid metabolism.
Figure 8: Rom2 interacts with sphingolipid metabolism.

Similar content being viewed by others

References

  1. Grossmann, G., Opekarova, M., Malinsky, J., Weig-Meckl, I. & Tanner, W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 26, 1–8 (2007).

    Article  CAS  Google Scholar 

  2. Walther, T.C. et al. Eisosomes mark static sites of endocytosis. Nature 439, 998–1003 (2006).

    Article  CAS  Google Scholar 

  3. Grossmann, G. et al. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 183, 1075–1088 (2008).

    Article  CAS  Google Scholar 

  4. deHart, A.K., Schnell, J.D., Allen, D.A. & Hicke, L. The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast. J. Cell Biol. 156, 241–248 (2002).

    Article  CAS  Google Scholar 

  5. Friant, S., Lombardi, R., Schmelzle, T., Hall, M.N. & Riezman, H. Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast. EMBO J. 20, 6783–6792 (2001).

    Article  CAS  Google Scholar 

  6. Walther, T.C. et al. Pkh-kinases control eisosome assembly and organization. EMBO J. 26, 4946–4955 (2007).

    Article  CAS  Google Scholar 

  7. Aronova, S. et al. Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab. 7, 148–158 (2008).

    Article  CAS  Google Scholar 

  8. Guan, X.L. et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 20, 2083–2095 (2009).

    Article  CAS  Google Scholar 

  9. Tabuchi, M., Audhya, A., Parsons, A.B., Boone, C. & Emr, S.D. The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol. Cell. Biol. 26, 5861–5875 (2006).

    Article  CAS  Google Scholar 

  10. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  11. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    Article  CAS  Google Scholar 

  12. Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 7, R63 (2006).

    Article  Google Scholar 

  13. Schuldiner, M., Collins, S.R., Weissman, J.S. & Krogan, N.J. Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions. Methods 40, 344–352 (2006).

    Article  CAS  Google Scholar 

  14. Ulitsky, I., Shlomi, T., Kupiec, M. & Shamir, R. From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Mol. Syst. Biol. 4, 209 (2008).

    Article  Google Scholar 

  15. Bandyopadhyay, S., Kelley, R., Krogan, N.J. & Ideker, T. Functional maps of protein complexes from quantitative genetic interaction data. PLOS Comput. Biol. 4, e1000065 (2008).

    Article  Google Scholar 

  16. Collins, S.R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    Article  CAS  Google Scholar 

  17. Fiedler, D. et al. Functional organization of the S. cerevisiae phosphorylation network. Cell 136, 952–963 (2009).

    Article  CAS  Google Scholar 

  18. Wilmes, G.M. et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell 32, 735–746 (2008).

    Article  CAS  Google Scholar 

  19. Collins, S.R. et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450 (2007).

    Article  CAS  Google Scholar 

  20. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  Google Scholar 

  21. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  Google Scholar 

  22. Ren, G., Vajjhala, P., Lee, J.S., Winsor, B. & Munn, A.L. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol. Mol. Biol. Rev. 70, 37–120 (2006).

    Article  CAS  Google Scholar 

  23. Revardel, E., Bonneau, M., Durrens, P. & Aigle, M. Characterization of a new gene family developing pleiotropic phenotypes upon mutation in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1263, 261–265 (1995).

    Article  Google Scholar 

  24. Breton, A.M. & Aigle, M. Genetic and functional relationship between Rvsp, myosin and actin in Saccharomyces cerevisiae. Curr. Genet. 34, 280–286 (1998).

    Article  CAS  Google Scholar 

  25. Brizzio, V., Gammie, A.E. & Rose, M.D. Rvs161p interacts with Fus2p to promote cell fusion in Saccharomyces cerevisiae. J. Cell Biol. 141, 567–584 (1998).

    Article  CAS  Google Scholar 

  26. Friesen, H. et al. Characterization of the yeast amphiphysins Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo. Mol. Biol. Cell 17, 1306–1321 (2006).

    Article  CAS  Google Scholar 

  27. Jonikas, M.C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).

    Article  CAS  Google Scholar 

  28. Valdivia, R.H., Baggott, D., Chuang, J.S. & Schekman, R.W. The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev. Cell 2, 283–294 (2002).

    Article  CAS  Google Scholar 

  29. Efe, J.A. et al. Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. J. Cell Sci. 118, 4751–4764 (2005).

    Article  CAS  Google Scholar 

  30. Levin, D.E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 262–291 (2005).

    Article  CAS  Google Scholar 

  31. Frohlich, F. et al. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J. Cell Biol. 185, 1227–1242 (2009).

    Article  Google Scholar 

  32. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  33. Wang, H. et al. A complex-based reconstruction of the Saccharomyces cerevisiae interactome. Mol. Cell. Proteomics 8, 1361–1381 (2009).

    Article  CAS  Google Scholar 

  34. Deng, C., Xiong, X. & Krutchinsky, A.N. Unifying fluorescence microscopy and mass spectrometry for studying protein complexes in cells. Mol. Cell. Proteomics 8, 1413–1423 (2009).

    Article  CAS  Google Scholar 

  35. Schimmoller, F., Diaz, E., Muhlbauer, B. & Pfeffer, S.R. Characterization of a 76 kDa endosomal, multispanning membrane protein that is highly conserved throughout evolution. Gene 216, 311–318 (1998).

    Article  CAS  Google Scholar 

  36. Vida, T.A. & Emr, S.D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792 (1995).

    Article  CAS  Google Scholar 

  37. Zheng, B., Wu, J.N., Schober, W., Lewis, D.E. & Vida, T. Isolation of yeast mutants defective for localization of vacuolar vital dyes. Proc. Natl. Acad. Sci. USA 95, 11721–11726 (1998).

    Article  CAS  Google Scholar 

  38. Babst, M., Wendland, B., Estepa, E.J. & Emr, S.D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    Article  CAS  Google Scholar 

  39. Teis, D., Saksena, S. & Emr, S.D. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev. Cell 15, 578–589 (2008).

    Article  CAS  Google Scholar 

  40. Brickner, J.H. & Fuller, R.S. SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals. J. Cell Biol. 139, 23–36 (1997).

    Article  CAS  Google Scholar 

  41. Sipos, G. et al. Soi3p/Rav1p functions at the early endosome to regulate endocytic trafficking to the vacuole and localization of trans-Golgi network transmembrane proteins. Mol. Biol. Cell 15, 3196–3209 (2004).

    Article  CAS  Google Scholar 

  42. Robinson, J.S., Klionsky, D.J., Banta, L.M. & Emr, S.D. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 8, 4936–4948 (1988).

    Article  CAS  Google Scholar 

  43. Rothman, J.H., Howald, I. & Stevens, T.H. Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae. EMBO J. 8, 2057–2065 (1989).

    Article  CAS  Google Scholar 

  44. Cerantola, V. et al. Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides. Mol. Microbiol. 71, 1523–1537 (2009).

    Article  CAS  Google Scholar 

  45. Ejsing, C.S. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. USA 106, 2136–2141 (2009).

    Article  CAS  Google Scholar 

  46. Schmidt, A., Bickle, M., Beck, T. & Hall, M.N. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88, 531–542 (1997).

    Article  CAS  Google Scholar 

  47. Kobayashi, T., Takematsu, H., Yamaji, T., Hiramoto, S. & Kozutsumi, Y. Disturbance of sphingolipid biosynthesis abrogates the signaling of Mss4, phosphatidylinositol-4-phosphate 5-kinase, in yeast. J. Biol. Chem. 280, 18087–18094 (2005).

    Article  CAS  Google Scholar 

  48. Audhya, A. & Emr, S.D. Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev. Cell 2, 593–605 (2002).

    Article  CAS  Google Scholar 

  49. Cherry, J.M. et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79 (1998).

    Article  CAS  Google Scholar 

  50. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  Google Scholar 

  51. Reguly, T. et al. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 5, 11 (2006).

    Article  Google Scholar 

  52. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  Google Scholar 

  53. Mullins, C. & Bonifacino, J.S. Structural requirements for function of yeast GGAs in vacuolar protein sorting, α-factor maturation, and interactions with clathrin. Mol. Cell. Biol. 21, 7981–7994 (2001).

    Article  CAS  Google Scholar 

  54. Olsen, J.V. et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021 (2005).

    Article  CAS  Google Scholar 

  55. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  56. Moore, R.E., Young, M.K. & Lee, T.D. Qscore: an algorithm for evaluating SEQUEST database search results. J. Am. Soc. Mass Spectrom. 13, 378–386 (2002).

    Article  CAS  Google Scholar 

  57. Peng, J., Elias, J.E., Thoreen, C.C., Licklider, L.J. & Gygi, S.P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2, 43–50 (2003).

    Article  CAS  Google Scholar 

  58. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Walther and Krogan laboratory for critical reading and comments, J. Brickner for suggestions, Ulrike Laabs for excellent technical assistance, O. Nørregaard Jensen (University of Southern Denmark) for providing access to the Nanomate Triversa used for the lipidomic experiments and P. Kemmeren for establishing the database. This work was supported by the Max Planck Society (T.C.W.), the German Research Foundation (DFG; T.C.W.), the German-Israeli Foundation (T.C.W.), the US National Institutes of Health, the Searle, Sandler and Keck Foundations (N.J.K.), the International Human Frontier Science Program (HFSP; T.C.W.), the Israel Science Foundation (grant no. 802/08; R.S.), the Edmond J. Safra Bioinformatics program at Tel Aviv University (I.U.), the Programa de Apoyo Sectorial a la Estrategia Nacional de Innovación (INNOVA URUGUAY, DCI-ALA/2007/19.040, P.S.A.), the Agencia Nacional de Investigación e Innovación (ANII, A.O.-C.), the Danish Council for Independent Research (DOK1155860, C.S.E.) and Lundbeckfonden (R45-A4342, C.S.E.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to every aspect of this work.

Corresponding authors

Correspondence to Nevan J Krogan or Tobias C Walther.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 3–7 (PDF 10198 kb)

Supplementary Table 1

Classification of genes used for Figure 1a (XLS 67 kb)

Supplementary Table 2

Correlations of genes pairs in the plasma membrane E-MAP used in Figures 1b and 1c. (XLS 12860 kb)

Supplementary Video 1

Localization of Emp70-GFP. (AVI 11923 kb)

Supplementary Video 2

Localization of Emp70-GFP in respect to Lsp1-RFPmars. (AVI 11887 kb)

Supplementary Data

Treeview representation for clustergram of the PM E-MAP, composed of 4 files (.atr, .cdt,.gtr.,jtv). These files can be opened by a treeview program such as Java Treeview that can be found at: http://jtreeview.sourceforge.net/. (ZIP 471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, P., Fröhlich, F., Rehman, M. et al. A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat Struct Mol Biol 17, 901–908 (2010). https://doi.org/10.1038/nsmb.1829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing