Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus

Abstract

Podovirus P-SSP7 infects Prochlorococcus marinus, the most abundant oceanic photosynthetic microorganism. Single-particle cryo–electron microscopy yields icosahedral and asymmetrical structures of infectious P-SSP7 with 4.6-Å and 9-Å resolution, respectively. The asymmetric reconstruction reveals how symmetry mismatches are accommodated among five of the gene products at the portal vertex. Reconstructions of infectious and empty particles show a conformational change of the 'valve' density in the nozzle, an orientation difference in the tail fibers, a disordering of the C terminus of the portal protein and the disappearance of the core proteins. In addition, cryo–electron tomography of P-SSP7 infecting Prochlorococcus showed the same tail-fiber conformation as that in empty particles. Our observations suggest a mechanism whereby, upon binding to the host cell, the tail fibers induce a cascade of structural alterations of the portal vertex complex that triggers DNA release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Image and reconstruction of P-SSP7 at 4.6-Å resolution.
Figure 2: Asymmetric reconstructions of P-SSP7.
Figure 3: Symmetry mismatch at the portal vertex.
Figure 4: Cryo-ET of P-SSP7 infecting MED-4 cell.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Sullivan, M.B., Coleman, M.L., Weigele, P., Rohwer, F. & Chisholm, S.W. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 3, e144 (2005).

    Article  Google Scholar 

  2. Moore, L.R., Rocap, G. & Chisholm, S.W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998).

    Article  CAS  Google Scholar 

  3. Liu, H., Nolla, H.A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical north Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).

    Article  Google Scholar 

  4. Angly, F.E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006).

    Article  Google Scholar 

  5. Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).

    Article  CAS  Google Scholar 

  6. Lindell, D., Jaffe, J.D., Johnson, Z.I., Church, G.M. & Chisholm, S.W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

    Article  CAS  Google Scholar 

  7. Liu, X., Jiang, W., Jakana, J. & Chiu, W. Averaging tens to hundreds of icosahedral particle images to resolve protein secondary structure elements using a multi-path simulated annealing optimization algorithm. J. Struct. Biol. 160, 11–27 (2007).

    Article  CAS  Google Scholar 

  8. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  9. Jiang, W. et al. Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy. Nature 451, 1130–1134 (2008).

    Article  CAS  Google Scholar 

  10. Wikoff, W.R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  Google Scholar 

  11. Jiang, W. et al. Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat. Struct. Biol. 10, 131–135 (2003).

    Article  CAS  Google Scholar 

  12. Fokine, A. et al. Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc. Natl. Acad. Sci. USA 102, 7163–7168 (2005).

    Article  CAS  Google Scholar 

  13. Morais, M.C. et al. Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of φ29. Mol. Cell 18, 149–159 (2005).

    Article  CAS  Google Scholar 

  14. Baker, M.L. et al. Architecture of the herpes simplex virus major capsid protein derived from structural bioinformatics. J. Mol. Biol. 331, 447–456 (2003).

    Article  CAS  Google Scholar 

  15. Purohit, P.K. et al. Forces during bacteriophage DNA packaging and ejection. Biophys. J. 88, 851–866 (2005).

    Article  CAS  Google Scholar 

  16. Aksyuk, A.A. et al. The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J. 28, 821–829 (2009).

    Article  CAS  Google Scholar 

  17. Orlova, E.V. et al. Structure of a viral DNA gatekeeper at 10 Å resolution by cryo-electron microscopy. EMBO J. 22, 1255–1262 (2003).

    Article  CAS  Google Scholar 

  18. Lhuillier, S. et al. Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc. Natl. Acad. Sci. USA 106, 8507–8512 (2009).

    Article  CAS  Google Scholar 

  19. Leiman, P.G., Chipman, P.R., Kostyuchenko, V.A., Mesyanzhinov, V.V. & Rossmann, M.G. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118, 419–429 (2004).

    Article  CAS  Google Scholar 

  20. Plisson, C. et al. Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J. 26, 3720–3728 (2007).

    Article  CAS  Google Scholar 

  21. Cong, Y. et al. Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy. Structure 17, 749–758 (2009).

    Article  CAS  Google Scholar 

  22. Henderson, R. & Moffat, J.K. The difference Fourier technique in protein crystallography: errors and their treatment. Acta Crystallogr. B 27, 1414–1420 (1971).

    Article  CAS  Google Scholar 

  23. Kemp, P., Garcia, L.R. & Molineux, I.J. Changes in bacteriophage T7 virion structure at the initiation of infection. Virology 340, 307–317 (2005).

    Article  CAS  Google Scholar 

  24. Baker, M.L., Ju, T. & Chiu, W. Identification of secondary structure elements in intermediate-resolution density maps. Structure 15, 7–19 (2007).

    Article  CAS  Google Scholar 

  25. Simpson, A.A. et al. Structure determination of the head-tail connector of bacteriophage phi29. Acta Crystallogr. D Biol. Crystallogr. 57, 1260–1269 (2001).

    Article  CAS  Google Scholar 

  26. Lebedev, A.A. et al. Structural framework for DNA translocation via the viral portal protein. EMBO J. 26, 1984–1994 (2007).

    Article  CAS  Google Scholar 

  27. McGuffin, L.J., Bryson, K. & Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).

    Article  CAS  Google Scholar 

  28. Cole, C., Barber, J.D. & Barton, G.J. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 36, W197–W201 (2008).

    Article  CAS  Google Scholar 

  29. Guo, L., Han, A., Bates, D.L., Cao, J. & Chen, L. Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Proc. Natl. Acad. Sci. USA 104, 4297–4302 (2007).

    Article  CAS  Google Scholar 

  30. Jiang, W. et al. Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439, 612–616 (2006).

    Article  CAS  Google Scholar 

  31. Randall, G.L., Zechiedrich, L. & Pettitt, B.M. In the absence of writhe, DNA relieves torsional stress with localized, sequence-dependent structural failure to preserve B-form. Nucleic Acids Res. 37, 5568–5577 (2009).

    Article  CAS  Google Scholar 

  32. Tang, J. et al. DNA poised for release in bacteriophage φ29. Structure 16, 935–943 (2008).

    Article  CAS  Google Scholar 

  33. Hendrix, R.W. Symmetry mismatch and DNA packaging in large bacteriophages. Proc. Natl. Acad. Sci. USA 75, 4779–4783 (1978).

    Article  CAS  Google Scholar 

  34. Simpson, A.A. et al. Structure of the bacteriophage φ29 DNA packaging motor. Nature 408, 745–750 (2000).

    Article  CAS  Google Scholar 

  35. Agirrezabala, X. et al. Maturation of phage T7 involves structural modi-fication of both shell and inner core components. EMBO J. 24, 3820–3829 (2005).

    Article  CAS  Google Scholar 

  36. Kostyuchenko, V.A. et al. The tail structure of bacteriophage T4 and its mechanism of contraction. Nat. Struct. Mol. Biol. 12, 810–813 (2005).

    Article  CAS  Google Scholar 

  37. Yu, X., Jin, L. & Zhou, Z.H. 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453, 415–419 (2008).

    Article  CAS  Google Scholar 

  38. Lander, G.C. et al. The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312, 1791–1795 (2006).

    Article  CAS  Google Scholar 

  39. Leiman, P.G. et al. The structures of bacteriophages K1E and K1–5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J. Mol. Biol. 371, 836–849 (2007).

    Article  CAS  Google Scholar 

  40. Xiang, Y. et al. Structural changes of bacteriophage φ29 upon DNA packaging and release. EMBO J. 25, 5229–5239 (2006).

    Article  CAS  Google Scholar 

  41. Serysheva, I.I. et al. Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proc. Natl. Acad. Sci. USA 105, 9610–9615 (2008).

    Article  CAS  Google Scholar 

  42. Baker, M.L., Marsh, M.P. & Chiu, W. Cryo-EM of molecular nanomachines and cells. in Nanotechnology Vol. 5 (ed. Vogel, V.) 91–111 (Wiley-VCH, Hoboken, New Jersey, USA, 2009).

  43. Lucic, V., Forster, F. & Baumeister, W. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865 (2005).

    Article  CAS  Google Scholar 

  44. Steven, A.C. et al. Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7. J. Mol. Biol. 200, 351–365 (1988).

    Article  CAS  Google Scholar 

  45. Molineux, I.J. No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol. Microbiol. 40, 1–8 (2001).

    Article  CAS  Google Scholar 

  46. Molineux, I.J., Calendar, R. & Abedon, S.T. The T7 group. in The Bacteriophages Vol. 17 (Oxford University Press USA, New York, USA, 2006).

  47. Liu, X., Rochat, R.H & Chiu, W. Reconstructing cyano-bacteriophage P-SSP7 structure without imposing symmetry. Nat. Protoc. published online, doi:10.1038/nprot.2010.96 (13 June 2010).

    Article  CAS  Google Scholar 

  48. Kivioja, T., Ravantti, J., Verkhovsky, A., Ukkonen, E. & Bamford, D. Local average intensity-based method for identifying spherical particles in electron micrographs. J. Struct. Biol. 131, 126–134 (2000).

    Article  CAS  Google Scholar 

  49. Crowther, R.A., DeRosier, D.J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A Math. Phys. Sci. 317, 319–340 (1970).

    Article  Google Scholar 

  50. Chang, J., Weigele, P., King, J., Chiu, W. & Jiang, W. Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. Structure 14, 1073–1082 (2006).

    Article  CAS  Google Scholar 

  51. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  52. Ludtke, S.J. et al. De novo backbone trace of GroEL from single particle electron cryomicroscopy. Structure 16, 441–448 (2008).

    Article  CAS  Google Scholar 

  53. Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  54. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  55. Schmid, M.F. & Booth, C.R. Methods for aligning and for averaging 3D volumes with missing data. J. Struct. Biol. 161, 243–248 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Coleman, S. Rodrigue, R. Malmstrom, J. Waldbauer and S. Kern for assistance in the infection experiments, J. Chang, Q. Zeng, S. Labrie and F. Rixon for discussions and J. Chang, K. Welgehausen and R. Rochat for editorial assistance in preparation of the manuscript. This research was supported in parts by grants from the US National Institutes of Health (P41RR002250, R01GM079429 to W.C.), the US National Science Foundation (IIS-0705644 to W.C. and M.L.B.), the Robert Welch Foundation (Q1242 to W.C.), the US Department of Energy, the US National Science Foundation and the Gordon and Betty Moore Foundation (to S.W.C.).

Author information

Authors and Affiliations

Authors

Contributions

M.B.S., M.S.O. and S.W.C. designed and conducted the phage-host experiments and provided the samples; Q.Z. took single-particle images; Q.Z., C.F. and K.M. took tomographic images; X.L. introduced the methodology for and performed the single-particle symmetric and asymmetric reconstructions; X.L. and W.C. interpreted the maps; M.F.S. analyzed the difference maps; K.M. did tomographic reconstructions and performed analysis with assistance from M.F.S.; M.L.B. and X.L. built Cα backbone models; M.T.D. and W.C. designed the animations; X.L. and W.C. wrote the paper with contributions from all coauthors.

Corresponding author

Correspondence to Wah Chiu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–8 (PDF 3879 kb)

Supplementary Video 1

4.6 Å capsid density and backbone models derived from the map with icosahedral symmetry imposed. (a) density map and segmented 7 asymmetric subunits. (MOV 2232 kb)

Supplementary Video 2

Backbone model for 1 subunit. (MOV 1780 kb)

Supplementary Video 3

Backbone models for the whole capsid. (MOV 2945 kb)

Supplementary Video 4

9 Å density map of P-SSP7 phage with no symmetry imposed.Different components comprising the portal vertex machinery are annotated as nozzle, adaptor, portal, tail fiber, core protein and DNA terminus. (MOV 2336 kb)

Supplementary Video 5

Tomogram of P-SSP7 infecting a Prochlorococcus (MED4 strain) cell is shown along the z-direction. (MOV 2840 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zhang, Q., Murata, K. et al. Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol 17, 830–836 (2010). https://doi.org/10.1038/nsmb.1823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1823

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology