Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis

Abstract

Teichoic acid polymers are composed of polyol-phosphate units and form a major component of Gram-positive bacterial cell walls. These anionic compounds perform a multitude of important roles in bacteria and are synthesized by monotopic membrane proteins of the TagF polymerase family. We have determined the structure of Staphylococcus epidermidis TagF to 2.7-Å resolution from a construct that includes both the membrane-targeting region and the glycerol-phosphate polymerase domains. TagF possesses a helical region for interaction with the lipid bilayer, placing the active site at a suitable distance for access to the membrane-bound substrate. Characterization of active-site residue variants and analysis of a CDP-glycerol substrate complex suggest a mechanism for polymer synthesis. With the importance of teichoic acid in Gram-positive physiology, this elucidation of the molecular details of TagF function provides a critical new target in the development of novel anti-infectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Teichoic acid chemical structure and nature of TagF polymerization reaction.
Figure 2: Structural features of S. epidermidis TagF membrane-binding and catalytic domains.
Figure 3: Oligomeric assembly of TagF.
Figure 4: Environment of conserved TagF-family histidine residues.
Figure 5: Interaction of TagF with the CDP-glycerol substrate.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Armstrong, J.J. et al. Composition of teichoic acids from a number of bacterial walls. Nature 184, 247–248 (1959).

    Article  CAS  Google Scholar 

  2. Hancock, I.C. Bacterial cell surface carbohydrates: structure and assembly. Biochem. Soc. Trans. 25, 183–187 (1997).

    Article  CAS  Google Scholar 

  3. Weidenmaier, C. & Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol. 6, 276–287 (2008).

    Article  CAS  Google Scholar 

  4. Kohler, T., Weidenmaier, C. & Peschel, A. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J. Bacteriol. 191, 4482–4484 (2009).

    Article  CAS  Google Scholar 

  5. Oku, Y. et al. Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells. J. Bacteriol. 191, 141–151 (2009).

    Article  CAS  Google Scholar 

  6. Schirner, K., Marles-Wright, J., Lewis, R.J. & Errington, J. Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J. 28, 830–842 (2009).

    Article  CAS  Google Scholar 

  7. D'Elia, M.A., Millar, K.E., Beveridge, T.J. & Brown, E.D. Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J. Bacteriol. 188, 8313–8316 (2006).

    Article  CAS  Google Scholar 

  8. D'Elia, M.A. et al. Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J. Bacteriol. 188, 4183–4189 (2006).

    Article  CAS  Google Scholar 

  9. von Eiff, C., Heilmann, C. & Peters, G. New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 18, 843–846 (1999).

    Article  CAS  Google Scholar 

  10. Xiang, Y. et al. Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol. Cell 34, 375–386 (2009).

    Article  Google Scholar 

  11. Ward, J.B. Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol. Rev. 45, 211–243 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, D. et al. Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. Proc. Natl. Acad. Sci. USA 106, 1584–1589 (2009).

    Article  CAS  Google Scholar 

  13. Sewell, E.W., Pereira, M.P. & Brown, E.D. The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis. J. Biol. Chem. 284, 21132–21138 (2009).

    Article  CAS  Google Scholar 

  14. Brown, S., Zhang, Y.H. & Walker, S. A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem. Biol. 15, 12–21 (2008).

    Article  CAS  Google Scholar 

  15. Fitzgerald, S.N. & Foster, T.J. Molecular analysis of the tagF gene, encoding CDP-Glycerol:Poly(glycerophosphate) glycerophosphotransferase of Staphylococcus epidermidis ATCC 14990. J. Bacteriol. 182, 1046–1052 (2000).

    Article  CAS  Google Scholar 

  16. Cantarel, B.L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  Google Scholar 

  17. Bourne, Y. & Henrissat, B. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr. Opin. Struct. Biol. 11, 593–600 (2001).

    Article  CAS  Google Scholar 

  18. Wrabl, J.O. & Grishin, N.V. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J. Mol. Biol. 314, 365–374 (2001).

    Article  CAS  Google Scholar 

  19. Holm, L. & Sander, C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 27, 244–247 (1999).

    Article  CAS  Google Scholar 

  20. Formstone, A., Carballido-Lopez, R., Noirot, P., Errington, J. & Scheffers, D.J. Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J. Bacteriol. 190, 1812–1821 (2008).

    Article  CAS  Google Scholar 

  21. Schertzer, J.W. & Brown, E.D. Use of CDP-glycerol as an alternate acceptor for the teichoic acid polymerase reveals that membrane association regulates polymer length. J. Bacteriol. 190, 6940–6947 (2008).

    Article  CAS  Google Scholar 

  22. Bhavsar, A.P., D′Elia, M.A., Sahakian, T.D. & Brown, E.D. The amino terminus of Bacillus subtilis TagB possesses separable localization and functional properties. J. Bacteriol. 189, 6816–6823 (2007).

    Article  CAS  Google Scholar 

  23. Bracey, M.H., Hanson, M.A., Masuda, K.R., Stevens, R.C. & Cravatt, B.F. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 298, 1793–1796 (2002).

    Article  CAS  Google Scholar 

  24. Schertzer, J.W., Bhavsar, A.P. & Brown, E.D. Two conserved histidine residues are critical to the function of the TagF-like family of enzymes. J. Biol. Chem. 280, 36683–36690 (2005).

    Article  CAS  Google Scholar 

  25. Ha, S., Walker, D., Shi, Y. & Walker, S. The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9, 1045–1052 (2000).

    Article  CAS  Google Scholar 

  26. Bolam, D.N. et al. The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Proc. Natl. Acad. Sci. USA 104, 5336–5341 (2007).

    Article  CAS  Google Scholar 

  27. Ni, L. et al. Cytidine 5′-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. Biochemistry 45, 2139–2148 (2006).

    Article  CAS  Google Scholar 

  28. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  Google Scholar 

  29. Campbell, R.E., Mosimann, S.C., Tanner, M.E. & Strynadka, N.C. The structure of UDP-N-acetylglucosamine 2-epimerase reveals homology to phosphoglycosyl transferases. Biochemistry 39, 14993–15001 (2000).

    Article  CAS  Google Scholar 

  30. Buschiazzo, A. et al. Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J. 23, 3196–3205 (2004).

    Article  CAS  Google Scholar 

  31. Honeyman, A.L. & Stewart, G.C. The nucleotide sequence of the rodC operon of Bacillus subtilis. Mol. Microbiol. 3, 1257–1268 (1989).

    Article  CAS  Google Scholar 

  32. Lomize, A.L., Pogozheva, I.D., Lomize, M.A. & Mosberg, H.I. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct. Biol. 7, 44 (2007).

    Article  Google Scholar 

  33. Barreras, M., Salinas, S.R., Abdian, P.L., Kampel, M.A. & Ielpi, L. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. J. Biol. Chem. 283, 25027–25035 (2008).

    Article  CAS  Google Scholar 

  34. Guerin, M.E. et al. Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J. Biol. Chem. 282, 20705–20714 (2007).

    Article  CAS  Google Scholar 

  35. Golovin, A. & Henrick, K. MSDmotif: exploring protein sites and motifs. BMC Bioinformatics 9, 312 (2008).

    Article  Google Scholar 

  36. Ni, L. et al. Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. Biochemistry 46, 6288–6298 (2007).

    Article  CAS  Google Scholar 

  37. Shiraki, K., Norioka, S., Li, S., Yokota, K. & Sakiyama, F. Electrostatic role of aromatic ring stacking in the pH-sensitive modulation of a chymotrypsin-type serine protease, Achromobacter protease I. Eur. J. Biochem. 269, 4152–4158 (2002).

    Article  CAS  Google Scholar 

  38. Burger, M.M. & Glaser, L. The synthesis of teichoic acids. I. Polyglycerophosphate. J. Biol. Chem. 239, 3168–3177 (1964).

    CAS  PubMed  Google Scholar 

  39. Mauck, J. & Glaser, L. An acceptor-dependent polyglycerolphosphate polymerase. Proc. Natl. Acad. Sci. USA 69, 2386–2390 (1972).

    Article  CAS  Google Scholar 

  40. Wickham, J.R., Halye, J.L., Kashtanov, S., Khandogin, J. & Rice, C.V. Revisiting magnesium chelation by teichoic acid with phosphorus solid-state NMR and theoretical calculations. J. Phys. Chem. B 113, 2177–2183 (2009).

    Article  CAS  Google Scholar 

  41. Pereira, M.P. et al. The wall teichoic acid polymerase TagF efficiently synthesizes poly(glycerol phosphate) on the TagB product lipid III. Chem. Bio. Chem 9, 1385–1390 (2008).

    Article  CAS  Google Scholar 

  42. Schertzer, J.W. & Brown, E.D. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro. J. Biol. Chem. 278, 18002–18007 (2003).

    Article  CAS  Google Scholar 

  43. Ramirez, M. & Tomasz, A. Molecular characterization of the complete 23F capsular polysaccharide locus of Streptococcus pneumoniae. J. Bacteriol. 180, 5273–5278 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  45. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  46. Collaborative Computation Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  47. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  48. Zwart, P.H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  Google Scholar 

  49. Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003).

    Article  CAS  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  51. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  52. Badurina, D.S., Zolli-Juran, M. & Brown, E.D. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar Km values. Biochim. Biophys. Acta 1646, 196–206 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Olovsson for maintenance of X-ray facilities. This work was made possible by operating grants from the Canadian Institutes of Health Research and Howard Hughes Medical Institute and infrastructure grants from the Michael Smith Foundation of Health Research and the Canadian Foundation of Innovation (to N.C.J.S.). N.C.J.S. is a Howard Hughes Medical Institute international research scholar and Michael Smith Foundation for Health Research Senior Scholar. E.D.B. was supported by a salary award from the Canada Research Chairs program and operating funds from the Canadian Institutes of Health Research (MOP-15496). We are grateful for beam time and assistance at the Advanced Light Source and Canadian Light Source.

Author information

Authors and Affiliations

Authors

Contributions

A.L.L. was responsible for the cloning, purification, crystallization and all X-ray and structural analyses; E.W.S. performed and analyzed kinetic assays; L.Y.-C.L. designed and tested the heparin purification procedure; T.S. contributed to crystallographic data processing and manuscript preparation; A.L.L., E.D.B. and N.C.J.S. were responsible for experimental design and manuscript preparation.

Corresponding author

Correspondence to Natalie C J Strynadka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Discussion and Supplementary Figures 1–4 (PDF 734 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovering, A., Lin, LC., Sewell, E. et al. Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Nat Struct Mol Biol 17, 582–589 (2010). https://doi.org/10.1038/nsmb.1819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing