Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The SM protein Vps33 and the t-SNARE Habc domain promote fusion pore opening

Abstract

Intracellular membrane fusion proceeds via distinct stages of membrane docking, hemifusion and fusion pore opening and depends on interacting families of Rab, SNARE and SM proteins. Trans-SNARE complexes dock the membranes in close apposition. Efficient fusion requires further SNARE-associated proteins. They might increase the number of trans-SNARE complexes or the fusogenic potential of a single SNARE complex. We investigated the contributions of the SM protein Vps33 to hemifusion and pore opening between yeast vacuoles. Mutations in Vps33 that weaken its interactions with the SNARE complex allowed normal trans-SNARE pairing and lipid mixing but retarded content mixing. Deleting the Habc domain of the vacuolar t-SNARE Vam3, which interacts with Vps33, had the same effect. This suggests that SM proteins promote fusion pore opening by enhancing the fusogenic activity of a SNARE complex. They should thus be considered integral parts of the fusion machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fusion of ΔN-Vam3 vacuoles.
Figure 2: Trans-SNARE assay for WT and ΔN-Vam3.
Figure 3: Fusion of vps33WT and vps33tsf variants.
Figure 4: Structure-based sequence alignments and coimmunoprecipitations of Vam3 and Vps33.
Figure 5: Fusion of vps33WT or vps33tsf-L vacuoles.
Figure 6: Fusion of vps33WT or vps33 D88K vacuoles.
Figure 7: Vps33-Vam3 binding interface.

Similar content being viewed by others

References

  1. Reese, C., Heise, F. & Mayer, A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436, 410–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12, 417–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, F.S. & Melikyan, G.B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Chernomordik, L.V., Zimmerberg, J. & Kozlov, M.M. Membranes of the world unite! J. Cell Biol. 175, 201–207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, X. et al. SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys. J. 90, 2062–2074 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Dennison, S.M., Bowen, M.E., Brunger, A.T. & Lentz, B.R. Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys. J. 90, 1661–1675 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Tucker, W.C., Weber, T. & Chapman, E. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Mima, J., Hickey, C.M., Xu, H., Jun, Y. & Wickner, W. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J. 27, 2031–2042 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohya, T. et al. Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes. Nature 459, 1091–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Hua, Y. & Scheller, R.H. Three SNARE complexes cooperate to mediate membrane fusion. Proc. Natl. Acad. Sci. USA 98, 8065–8070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu, X., Zhang, Y. & Shin, Y.K. Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15, 700–706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwartz, M.L. & Merz, A.J. Capture and release of partially zipped trans-SNARE complexes on intact organelles. J. Cell Biol. 185, 535–549 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rizo, J., Chen, X. & Arac, D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16, 339–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Jackson, M.B. & Chapman, E.R. The fusion pores of Ca2+-triggered exocytosis. Nat. Struct. Mol. Biol. 15, 684–689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E. & Melia, T.J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Sudhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Misura, K.M., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404, 355–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Carr, C.M., Grote, E., Munson, M., Hughson, F.M. & Novick, P.J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146, 333–344 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peng, R. & Gallwitz, D. Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J. Cell Biol. 157, 645–655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins, K.M., Thorngren, N.L., Fratti, R.A. & Wickner, W.T. Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J. 24, 1775–1786 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodkey, T.L., Liu, S., Barry, M. & McNew, J.A. Munc18a scaffolds SNARE assembly to promote membrane fusion. Mol. Biol. Cell 19, 5422–5434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sato, T.K., Rehling, P., Peterson, M.R., Emr, S.D. & Class, C. Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol. Cell 6, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Darsow, T., Rieder, S.E. & Emr, S.D. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J. Cell Biol. 138, 517–529 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dulubova, I., Yamaguchi, T., Wang, Y., Sudhof, T.C. & Rizo, J. Vam3p structure reveals conserved and divergent properties of syntaxins. Nat. Struct. Biol. 8, 258–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Laage, R. & Ungermann, C. The N-terminal domain of the t-SNARE Vam3p coordinates priming and docking in yeast vacuole fusion. Mol. Biol. Cell 12, 3375–3385 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307–317 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ostrowicz, C.W., Meiringer, C.T. & Ungermann, C. Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics. Autophagy 4, 5–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Reese, C. & Mayer, A. Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. J. Cell Biol. 171, 981–990 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Collins, K.M. & Wickner, W.T. Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proc. Natl. Acad. Sci. USA 104, 8755–8760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seals, D.F., Eitzen, G., Margolis, N., Wickner, W.T. & Price, A.A. Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl. Acad. Sci. USA 97, 9402–9407 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thorngren, N., Collins, K.M., Fratti, R.A., Wickner, W. & Merz, A.J. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J. 23, 2765–2776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deak, F. et al. Munc18–1 binding to the neuronal SNARE complex controls synaptic vesicle priming. J. Cell Biol. 184, 751–764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tareste, D., Shen, J., Melia, T.J. & Rothman, J.E. SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes. Proc. Natl. Acad. Sci. USA 105, 2380–2385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Furgason, M.L. et al. The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proc. Natl. Acad. Sci. USA 106, 14303–14308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dulubova, I. et al. How Tlg2p/syntaxin 16 'snares' Vps45. EMBO J. 21, 3620–3631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bracher, A. & Weissenhorn, W. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J. 21, 6114–6124 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiederkehr, A., De Craene, J.O., Ferro-Novick, S. & Novick, P. Functional specialization within a vesicle tethering complex: bypass of a subset of exocyst deletion mutants by Sec1p or Sec4p. J. Cell Biol. 167, 875–887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gulyas-Kovacs, A. et al. Munc18–1: sequential interactions with the fusion machinery stimulate vesicle docking and priming. J. Neurosci. 27, 8676–8686 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson, J.R. et al. Binding of UNC-18 to the N-terminus of syntaxin is essential for neurotransmission in Caenorhabditis elegans. Biochem. J. 418, 73–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Weimer, R.M. et al. Defects in synaptic vesicle docking in unc-18 mutants. Nat. Neurosci. 6, 1023–1030 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Gerber, S.H. et al. Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321, 1507–1510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Wit, H. et al. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138, 935–946 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Khvotchev, M. et al. Dual modes of Munc18–1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus. J. Neurosci. 27, 12147–12155 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fisher, R.J., Pevsner, J. & Burgoyne, R.D. Control of fusion pore dynamics during exocytosis by Munc18. Science 291, 875–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Schütz, D., Zilly, F., Lang, T., Jahn, R. & Bruns, D. A dual function for Munc-18 in exocytosis of PC12 cells. Eur. J. Neurosci. 21, 2419–2432 (2005).

    Article  PubMed  Google Scholar 

  47. Barclay, J.W., Aldea, M., Craig, T.J., Morgan, A. & Burgoyne, R.D. Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J. Biol. Chem. 279, 41495–41503 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Boyd, A. et al. A random mutagenesis approach to isolate dominant-negative yeast sec1 mutants reveals a functional role for domain 3a in yeast and mammalian Sec1/Munc18 proteins. Genetics 180, 165–178 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bowen, M.E., Weninger, K., Brunger, A.T. & Chu, S. Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). Biophys. J. 87, 3569–3584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dietrich, L.E. et al. ATP-independent control of Vac8 palmitoylation by a SNARE subcomplex on yeast vacuoles. J. Biol. Chem. 280, 15348–15355 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Munson, M. & Bryant, N.J. A role for the syntaxin N-terminus. Biochem. J. 418, e1–e3 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Carpp, L.N., Ciufo, L.F., Shanks, S.G., Boyd, A. & Bryant, N.J. The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes. J. Cell Biol. 173, 927–936 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Komen, J.S., Bai, X., Scott, B.L. & McNew, J.A. An intramolecular t-SNARE complex functions in vivo without the syntaxin NH2-terminal regulatory domain. J. Cell Biol. 172, 295–307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Biederer, T. & Sudhof, T.C. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J. Biol. Chem. 275, 39803–39806 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kraynack, B.A. et al. Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast. Mol. Biol. Cell 16, 3963–3977 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peterson, M.R., Burd, C.G. & Emr, S.D. Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr. Biol. 9, 159–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Neupert, W. & Brunner, M. The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol. 3, 555–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. McNew, J.A., Weber, T., Engelman, D.M., Sollner, T.H. & Rothman, J.E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415–421 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Kesavan, J., Borisovska, M. & Bruns, D. v-SNARE actions during Ca2+-triggered exocytosis. Cell 131, 351–363 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Langosch, D., Hofmann, M. & Ungermann, C. The role of transmembrane domains in membrane fusion. Cell. Mol. Life Sci. 64, 850–864 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Emr (Weill Institute for Cell and Molecular Biology) for strains and plasmids and V. Comte and M. Reinhardt for assistance. This work was supported by grants from the Swiss National Science Foundation, the Roche Research Foundation, the Human Frontier Science Program and the Leenaards Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.P. and A.S. performed the experiments; M.P. and A.M. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Andreas Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieren, M., Schmidt, A. & Mayer, A. The SM protein Vps33 and the t-SNARE Habc domain promote fusion pore opening. Nat Struct Mol Biol 17, 710–717 (2010). https://doi.org/10.1038/nsmb.1809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1809

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing