Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mammal-restricted elements predispose human RET to folding impairment by HSCR mutations

Abstract

The maturation of human RET is adversely affected by a range of missense mutations found in patients with Hirschsprung's disease (HSCR), a complex multigenic disease. Here we show that two N-terminal cadherin-like domains, CLD1 and CLD2 (CLD(1-2)), from human RET adopt a clam-shell arrangement distinct from that of classical cadherins. CLD1 structural elements and disulfide composition are unique to mammals, indicating an unexpected structural diversity within higher and lower vertebrate RET CLD regions. We identify two unpaired cysteines that predispose human RET to maturation impediments in the endoplasmic reticulum and establish a quantitative cell-based RET maturation assay that offers a biochemical correlate of HSCR disease severity. Our findings provide a key conceptual framework and means of testing and predicting genotype-phenotype correlations in HSCR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A clam-shell RET CLD(1-2) arrangement reveals mammalian clade-specific structural elements.
Figure 2: Mammalian RET-specific elements define a CLD1-mediated dimer interface.
Figure 3: Segregation of kinetic and thermodynamically compromised HSCR RET mutations by quantitative cell-based assays.
Figure 4: Discrete classes of HSCR mutations and their disease phenotypes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Edery, P. et al. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature 367, 378–380 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Skinner, M.A., Safford, S.D., Reeves, J.G., Jackson, M.E. & Freemerman, A.J. Renal aplasia in humans is associated with RET mutations. Am. J. Hum. Genet. 82, 344–351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parkash, V. et al. The structure of the glial cell line-derived neurotrophic factor-coreceptor complex: insights into RET signalling and heparin binding. J. Biol. Chem. 283, 35164–35172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, X., Baloh, R.H., Milbrandt, J. & Garcia, K.C. Structure of artemin complexed with its receptor GFRα3: convergent recognition of glial cell line-derived neurotrophic factors. Structure 14, 1083–1092 (2006).

    Article  PubMed  Google Scholar 

  7. Treanor, J.J. et al. Characterization of a multicomponent receptor for GDNF. Nature 382, 80–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Anders, J., Kjær, S. & Ibáñez, C.F. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site. J. Biol. Chem. 276, 35808–35817 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kjær, S. & Ibáñez, C.F. Identification of a surface for binding to the GDNF-GFRα1 complex in the first cadherin-like domain of RET. J. Biol. Chem. 278, 47898–47904 (2003).

    Article  PubMed  Google Scholar 

  10. de Graaff, E. et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 15, 2433–2444 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abrescia, C., Sjostrand, D., Kjær, S. & Ibáñez, C.F. Drosophila RET contains an active tyrosine kinase and elicits neurotrophic activities in mammalian cells. FEBS Lett. 579, 3789–3796 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hahn, M. & Bishop, J. Expression pattern of Drosophila ret suggests a common ancestral origin between the metamorphosis precursors in insect endoderm and the vertebrate enteric neurons. Proc. Natl. Acad. Sci. USA 98, 1053–1058 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kashuk, C.S. et al. Phenotype-genotype correlation in Hirschsprung disease is illuminated by comparative analysis of the RET protein sequence. Proc. Natl. Acad. Sci. USA 102, 8949–8954 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kjær, S. & Ibáñez, C.F. Intrinsic susceptibility to misfolding of a hot-spot for Hirschsprung disease mutations in the ectodomain of RET. Hum. Mol. Genet. 12, 2133–2144 (2003).

    Article  PubMed  Google Scholar 

  15. Hirsch, C., Gauss, R., Horn, S.C., Neuber, O. & Sommer, T. The ubiquitylation machinery of the endoplasmic reticulum. Nature 458, 453–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Heanue, T.A. & Pachnis, V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat. Rev. Neurosci. 8, 466–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Boggon, T.J. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Patel, S.D. et al. Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124, 1255–1268 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Ciatto, C. et al. T-cadherin structures reveal a novel adhesive binding mechanism. Nat. Struct. Mol. Biol. 17, 339–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dames, S.A. et al. Insights into the low adhesive capacity of human T-cadherin from the NMR structure of Its N-terminal extracellular domain. J. Biol. Chem. 283, 23485–23495 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro, L., Kwong, P.D., Fannon, A.M., Colman, D.R. & Hendrickson, W.A. Considerations on the folding topology and evolutionary origin of cadherin domains. Proc. Natl. Acad. Sci. USA 92, 6793–6797 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thornton, J.M. Disulphide bridges in globular proteins. J. Mol. Biol. 151, 261–287 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Pednekar, D., Tendulkar, A. & Durani, S. Electrostatics-defying interaction between arginine termini as a thermodynamic driving force in protein-protein interaction. Proteins 74, 155–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Hebert, D.N. & Molinari, M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, X. et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–815 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Jansens, A., van Duijn, E. & Braakman, I. Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 298, 2401–2403 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Molinari, M. N-glycan structure dictates extension of protein folding or onset of disposal. Nat. Chem. Biol. 3, 313–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Nollet, F., Kools, P. & van Roy, F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299, 551–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Meier, S. et al. Continuous molecular evolution of protein-domain structures by single amino acid changes. Curr. Biol. 17, 173–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: a review. J. Med. Genet. 45, 1–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Cosma, M.P., Cardone, M., Carlomagno, F. & Colantuoni, V. Mutations in the extracellular domain cause RET loss of function by a dominant negative mechanism. Mol. Cell. Biol. 18, 3321–3329 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  PubMed  Google Scholar 

  33. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  PubMed  Google Scholar 

  34. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  35. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  PubMed  Google Scholar 

  36. Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  38. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Salvatore, G. et al. Generation and characterization of novel monoclonal antibodies to the Ret receptor tyrosine kinase. Biochem. Biophys. Res. Commun. 294, 813–817 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C.F. Ibáñez (Karolinska Institute) for encouragement, support and the RET51 cDNA, A. Purkiss-Trew for help with phasing, S. Mouilleron for help with data collection, J. Murray-Rust for help with RET modeling, M. Santoro (Univ. of Naples) for the kind gift of mAb 1D9, J. Garcia-Fernandez (Univ. of Barcelona) for the unpublished amphioxus RET sequence, the LRI Peptide Synthesis Laboratory for the disulfide-linked xRET(1-2) peptide, the European Synchrotron Radiation Facility beamline staff on ID29 and Amgen for supplies of recombinant GDNF, in particular J. Treanor. This work was supported by funding from Cancer Research UK, the EU FP6 # LSHB-CT-2004-503467 Prokinase Network and a Marie Curie Intra-European Fellowship (#010656) to S.K.

Author information

Authors and Affiliations

Authors

Contributions

S.K. performed the experiments, with the exception of the MS analysis, which was performed by S.H. and N.T.; N.Q.M. and S.K. designed the study, interpreted the results and wrote the paper.

Corresponding author

Correspondence to Neil Q McDonald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Discussion and Supplementary Methods (PDF 1675 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjær, S., Hanrahan, S., Totty, N. et al. Mammal-restricted elements predispose human RET to folding impairment by HSCR mutations. Nat Struct Mol Biol 17, 726–731 (2010). https://doi.org/10.1038/nsmb.1808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing