Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells

Abstract

Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III–associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pairwise comparison of occupancy by proteins at Pol III loci.
Figure 2: Properties of Pol III targets.
Figure 3: Distinctions between TFIIIB isoforms.
Figure 4: Relationship of TFIIIC occupancy to Pol III occupancy and identification of ETC loci.
Figure 5: ETC motifs.
Figure 6: Cell specificity of ETC loci.

Similar content being viewed by others

References

  1. Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M. & Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet. 23, 614–622 (2007).

    Article  CAS  Google Scholar 

  2. Geiduschek, E.P. & Kassavetis, G.A. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310, 1–26 (2001).

    Article  CAS  Google Scholar 

  3. Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593–2620 (2002).

    Article  CAS  Google Scholar 

  4. Harismendy, O. et al. Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J. 22, 4738–4747 (2003).

    Article  CAS  Google Scholar 

  5. Moqtaderi, Z. & Struhl, K. Genome-wide occupancy of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol. Cell. Biol. 24, 4118–4127 (2004).

    Article  CAS  Google Scholar 

  6. Roberts, D.N., Stewart, A.J., Huff, J.T. & Cairns, B.R. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc. Natl. Acad. Sci. USA 100, 14695–14700 (2003).

    Article  CAS  Google Scholar 

  7. Oficjalska-Pham, D. et al. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol. Cell 22, 623–632 (2006).

    Article  CAS  Google Scholar 

  8. Roberts, D.N., Wilson, B., Huff, J.T., Stewart, A.J. & Cairns, B.R. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol. Cell 22, 633–644 (2006).

    Article  CAS  Google Scholar 

  9. Upadhya, R., Lee, J. & Willis, I.M. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol. Cell 10, 1489–1494 (2002).

    Article  CAS  Google Scholar 

  10. Noma, K., Cam, H.P., Maraia, R.J. & Grewal, S.I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006).

    Article  CAS  Google Scholar 

  11. Kuras, L., Kosa, P., Mencia, M. & Struhl, K. TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288, 1244–1248 (2000).

    Article  CAS  Google Scholar 

  12. Parrott, A.M. & Mathews, M.B. Novel rapidly evolving hominid RNAs bind nuclear factor 90 and display tissue-restricted distribution. Nucleic Acids Res. 35, 6249–6258 (2007).

    Article  CAS  Google Scholar 

  13. Borchert, G.M., Lanier, W. & Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13, 1097–1101 (2006).

    Article  CAS  Google Scholar 

  14. Bortolin-Cavaille, M.-L., Dance, M., Weber, M. & Cavaille, J. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res. 37, 3464–3473 (2009).

    Article  CAS  Google Scholar 

  15. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  Google Scholar 

  16. Mavrich, T.N. et al. A barrier nucleosome model for statistical positioning of nucleosome throughout the yeast genome. Genome Res. 18, 1073–1083 (2008).

    Article  CAS  Google Scholar 

  17. Raha, D. et al. Close association of RNA polymerase II and many transcription factors with Pol III genes. Proc. Natl. Acad. Sci. USA (in the press), 107 (2010).

  18. Carbon, P. & Krol, A. Transcription of the Xenopus laevis selenocysteine tRNA(Ser)Sec gene: a system that combines an internal B box and upstream elements also found in U6 snRNA genes. EMBO J. 10, 599–606 (1991).

    Article  CAS  Google Scholar 

  19. D'Ambrosio, C. et al. Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22, 2215–2227 (2008).

    Article  CAS  Google Scholar 

  20. Haeusler, R.A., Pratt-Hyatt, M., Good, P.D., Gipson, T.A. & Engelke, D.R. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev. 22, 2204–2214 (2008).

    Article  CAS  Google Scholar 

  21. Simms, T.A. et al. TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae. Eukaryot. Cell 7, 2078–2086 (2008).

    Article  CAS  Google Scholar 

  22. Valenzuela, L., Dhillon, N. & Kamakaka, R.T. Transcription independent insulation at TFIIIC-dependent insulators. Genetics 183, 131–148 (2009).

    Article  CAS  Google Scholar 

  23. Donze, D., Adams, C.R., Rine, J. & Kamakaka, R.T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698–708 (1999).

    Article  CAS  Google Scholar 

  24. Wallace, J.A. & Felsenfeld, G. We gather together: insulators and genome organization. Curr. Opin. Genet. Dev. 17, 400–407 (2007).

    Article  CAS  Google Scholar 

  25. Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433 (2008).

    Article  CAS  Google Scholar 

  26. Core, L.J. & Lis, J.T. Transcription regulation through promoter-proximal pausing of RNA polymerase. Science 319, 1791–1792 (2008).

    Article  CAS  Google Scholar 

  27. Fuda, N.J., Ardehali, M.B. & Lis, J.T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    Article  CAS  Google Scholar 

  28. Kenneth, N.S. et al. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc. Natl. Acad. Sci. USA 104, 14917–14922 (2007).

    Article  CAS  Google Scholar 

  29. Yuan, C.-C. CHD8 associates with human Staf and contributes to efficient U6 RNA polymerase III transcription. Mol. Cell. Biol. 27, 8729–8738 (2007).

    Article  CAS  Google Scholar 

  30. Hsieh, Y.J., Kundu, T.K., Wang, Z., Kovelman, R. & Roeder, R.G. The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol. Cell. Biol. 19, 7697–7704 (1999).

    Article  CAS  Google Scholar 

  31. Kundu, T.K., Wang, Z. & Roeder, R.G. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol. Cell. Biol. 19, 1605–1615 (1999).

    Article  CAS  Google Scholar 

  32. Mertens, C. & Roeder, R.G. Different functional modes of p300 in activation of RNA polymerase transcription from chromatin templates. Mol. Cell. Biol. 28, 5764–5776 (2008).

    Article  CAS  Google Scholar 

  33. Rollins, J., Veras, I., Cabarcas, S., Willis, I. & Schramm, L. Human Maf1 negatively regulates RNA polymerase III transcription via the TFIIB family members Brf1 and Brf2. Int. J. Biol. Sci. 3, 292–302 (2007).

    Article  CAS  Google Scholar 

  34. Sutcliffe, J.E., Brown, T.R., Allison, S.J., Scott, P.H. & White, R.J. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol. Cell. Biol. 20, 9192–9202 (2000).

    Article  CAS  Google Scholar 

  35. Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    Article  CAS  Google Scholar 

  36. Felton-Edkins, Z.A. et al. The mitogen-activated protein (MAP) kinase ERT induces tRNA synthesis by phosphorylating TFIIIB. EMBO J. 22, 2422–2432 (2003).

    Article  CAS  Google Scholar 

  37. Hiraga, S., Botsios, S. & Donaldson, A.D. Histone H3 lysine 56 acetylation by Rtt1090 is crucial for nucleosome positioning. J. Cell Biol. 183, 641–651 (2008).

    Article  CAS  Google Scholar 

  38. Miotto, B. & Struhl, K. HBO1 histone acetylase is a co-activator of the replication licensing factor Cdt1. Genes Dev. 22, 2633–2638 (2008).

    Article  CAS  Google Scholar 

  39. Fairley, J.A., Scott, P.H. & White, R.J. TFIIIB is phosphorylated, disrupted and selectively released from tRNA promoters during mitosis in vivo. EMBO J. 22, 5841–5850 (2003).

    Article  CAS  Google Scholar 

  40. Cairns, C.A. & White, R.J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 17, 3112–3123 (1998).

    Article  CAS  Google Scholar 

  41. Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 16, 847–852 (2009).

    Article  CAS  Google Scholar 

  42. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  43. Nicol et al. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25, 2730–2731 (2009).

    Article  CAS  Google Scholar 

  44. Karolchik, D. et al. The UCSC Genome Browser database. Nucleic Acids Res. 31, 51–54 (2003).

    Article  CAS  Google Scholar 

  45. Chan, P.P. & Lowe, T.M. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37, D93–D97 (2009).

    Article  CAS  Google Scholar 

  46. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Liu and X. Liu for initial comments about the sequencing data, J. Mellor for helpful advice on programming in Python, N. Lamarre-Vincent, X. Fan, H. Hirsch and M. Lindahl Allen for discussion, G. Euskirchen, H. Monahan, M. Shi and P. Lacroute for help with DNA sequencing and M. Wilson for help with database submission. Funding for this work was provided by US National Institutes of Health grants GM 30186 (K.S.), HG 4558 (M.S. and K.S.) and HG 4695 (Z.W.).

Author information

Authors and Affiliations

Authors

Contributions

Z.M. designed the experiments, performed and analyzed the ChIP and validation experiments, performed bioinformatics analysis, constructed figures and wrote the paper; J.W. performed bioinformatics analysis, discussed the results and constructed figures; D.R. supervised the library construction and Illumina sequencing of the immunoprecipitated DNA; R.J.W. provided the antibodies used in the ChIPs, discussed the results and suggested modifications to the text; M.S. supervised the library construction and Illumina sequencing of the immunoprecipitated DNA; Z.W. supervised the bioinformatics analysis and participated in substantial discussion of the bioinformatics and figures; K.S. participated in substantial discussion of all experiments, results and figures and contributed to the text.

Corresponding author

Correspondence to Kevin Struhl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 193 kb)

Supplementary Data 1

Peak lists obtained by MACS analysis of each ChIP sequencing data set (XLS 1033 kb)

Supplementary Data 2

Rpc155 targets with gene annotations. (XLS 557 kb)

Supplementary Data 3

List of ETC loci as defined by a TFIIIC-110/Rpc155 ratio greater than three standard deviations above the median ratio at tRNA genes. (XLS 973 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moqtaderi, Z., Wang, J., Raha, D. et al. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat Struct Mol Biol 17, 635–640 (2010). https://doi.org/10.1038/nsmb.1794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing