Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural aspects of messenger RNA reading frame maintenance by the ribosome

Abstract

One key question in protein biosynthesis is how the ribosome couples mRNA and tRNA movements to prevent disruption of weak codon-anticodon interactions and loss of the translational reading frame during translocation. Here we report the complete path of mRNA on the 70S ribosome at the atomic level (3.1-Å resolution), and we show that one of the conformational rearrangements that occurs upon transition from initiation to elongation is a narrowing of the downstream mRNA tunnel. This rearrangement triggers formation of a network of interactions between the mRNA downstream of the A-site codon and the elongating ribosome. Our data elucidate the mechanism by which hypermodified nucleoside 2-methylthio-N6 isopentenyl adenosine at position 37 (ms2i6A37) in tRNAPheGAA stabilizes mRNA-tRNA interactions in all three tRNA binding sites. Another network of contacts is formed between this tRNA modification and ribosomal elements surrounding the mRNA E/P kink, resulting in the anchoring of P-site tRNA. These data allow rationalization of how modification deficiencies of ms2i6A37 in tRNAs may lead to shifts of the translational reading frame.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the ribosome in the elongation and initiation states.
Figure 2: mRNA-ribosome interactions downstream of the A codon.
Figure 3: Stabilization of codon-anticodon interactions by cross-strand stacking of hypermodified nucleotide 37 (ms2i6A37) in the A, P and E sites.
Figure 4: Overview of mRNA and tRNA interactions with the ribosome.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Kurland, C.G., Hughes, D. & Ehrenberg, M. Limitation of translation accuracy. in Escherichia coli and Salmonella. Cellular and Molecular Biology (ed. Neidhardt, F.C.) 979–1004 (American Society for Microbiology, Washington, DC, 1996).

  2. Jorgensen, F. & Kurland, C.G. Processivity errors of gene expression in Escherichia coli. J. Mol. Biol. 215, 511–521 (1990).

    Article  CAS  Google Scholar 

  3. Bouadloun, F., Srichaiyo, T., Isaksson, L.A. & Bjork, G.R. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J. Bacteriol. 166, 1022–1027 (1986).

    Article  CAS  Google Scholar 

  4. Konevega, A.L., Soboleva, N.G., Makhno, V.I., Peshekhonov, A.V. & Katunin, V.I. The effect of modification of tRNA nucleotide-37 on the tRNA interaction with the P- and A-site of the 70S ribosome Escherichia coli. Mol. Biol. (Mosk.) 40, 669–683 (2006).

    Article  CAS  Google Scholar 

  5. Urbonavicius, J., Qian, Q., Durand, J.M., Hagervall, T.G. & Bjork, G.R. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 20, 4863–4873 (2001).

    Article  CAS  Google Scholar 

  6. Gustilo, E.M., Vendeix, F.A. & Agris, P.F. tRNA's modifications bring order to gene expression. Curr. Opin. Microbiol. 11, 134–140 (2008).

    Article  CAS  Google Scholar 

  7. Rozenski, J., Crain, P.F. & McCloskey, J.A. The RNA modification database: 1999 update. Nucleic Acids Res. 27, 196–197 (1999).

    Article  CAS  Google Scholar 

  8. Murphy, F.V. IV, Ramakrishnan, V., Malkiewicz, A. & Agris,, P.F. The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat. Struct. Mol. Biol. 11, 1186–1191 (2004).

    Article  CAS  Google Scholar 

  9. Weixlbaumer, A. et al. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat. Struct. Mol. Biol. 14, 498–502 (2007).

    Article  CAS  Google Scholar 

  10. Vacher, J., Grosjean, H., Houssier, C. & Buckingham, R.H. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. J. Mol. Biol. 177, 329–342 (1984).

    Article  CAS  Google Scholar 

  11. Yanofsky, C. Mutations affecting tRNATrp and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon. J. Mol. Biol. 113, 663–677 (1977).

    Article  CAS  Google Scholar 

  12. Petrullo, L.A., Gallagher, P.J. & Elseviers, D. The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. Mol. Gen. Genet. 190, 289–294 (1983).

    Article  CAS  Google Scholar 

  13. Wilson, R.K. & Roe, B.A. Presence of the hypermodified nucleotide N6-(δ 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA. Proc. Natl. Acad. Sci. USA 86, 409–413 (1989).

    Article  CAS  Google Scholar 

  14. Urbonavicius, J. et al. Transfer RNA modifications that alter +1 frameshifting in general fail to affect −1 frameshifting. RNA 9, 760–768 (2003).

    Article  CAS  Google Scholar 

  15. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  16. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  Google Scholar 

  17. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  18. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  19. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  Google Scholar 

  20. Jenner, L. et al. Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science 308, 120–123 (2005).

    Article  CAS  Google Scholar 

  21. Yusupova, G., Jenner, L., Rees, B., Moras, D. & Yusupov, M. Structural basis for messenger RNA movement on the ribosome. Nature 444, 391–394 (2006).

    Article  CAS  Google Scholar 

  22. Gogia, Z.V., Yusupov, M.M. & Spirina, T.N. Structure of Thermus thermophilus ribosomes. Method of isolation and purification of the ribosomes. Molekul. Biol. 20, 519–526 (1986).

    Google Scholar 

  23. Jukes, T.H. Possibilities for the evolution of the genetic code from a preceding form. Nature 246, 22–26 (1973).

    Article  CAS  Google Scholar 

  24. Jenner, L., Rees, B., Yusupov, M. & Yusupova, G. Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. EMBO Rep. 8, 846–850 (2007).

    Article  CAS  Google Scholar 

  25. Lill, R. & Wintermeyer, W. Destabilization of codon-anticodon interaction in the ribosomal exit site. J. Mol. Biol. 196, 137–148 (1987).

    Article  CAS  Google Scholar 

  26. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71, 1342–1346 (1974).

    Article  CAS  Google Scholar 

  27. Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat. Struct. Mol. Biol. 14, 733–737 (2007).

    Article  CAS  Google Scholar 

  28. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008).

    Article  CAS  Google Scholar 

  29. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008).

    Article  CAS  Google Scholar 

  30. Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. USA 105, 19684–19689 (2008).

    Article  CAS  Google Scholar 

  31. Schurr, T., Nadir, E. & Margalit, H. Identification and characterization of E. coli ribosomal binding sites by free energy computation. Nucleic Acids Res. 21, 4019–4023 (1993).

    Article  CAS  Google Scholar 

  32. Geigenmuller, U. & Nierhaus, K.H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 9, 4527–4533 (1990).

    Article  CAS  Google Scholar 

  33. Menichi, B. & Heyman, T. Study of tyrosine transfer ribonucleic acid modification in relation to sporulation in Bacillus subtilis. J. Bacteriol. 127, 268–280 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoburg, A., Aschhoff, H.J., Kersten, H., Manderschied, U. & Gassen, H.G. Function of modified nucleosides 7-methylguanosine, ribothymidine, and 2-thiomethyl-N6-(isopentenyl)adenosine in procaryotic transfer ribonucleic acid. J. Bacteriol. 140, 408–414 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Klein, D.J., Moore, P.B. & Steitz, T.A. The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA 10, 1366–1379 (2004).

    Article  CAS  Google Scholar 

  36. Pyle, A.M. Metal ions in the structure and function of RNA. J. Biol. Inorg. Chem. 7, 679–690 (2002).

    Article  CAS  Google Scholar 

  37. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  38. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  39. Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    Article  CAS  Google Scholar 

  40. Zhang, W., Dunkle, J.A. & Cate, J.H. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017 (2009).

    Article  CAS  Google Scholar 

  41. Kabsch, W. Automatic indexing of rotation diffraction patterns. J. Appl. Crystallogr. 21, 67–72 (1988).

    Article  CAS  Google Scholar 

  42. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  44. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  45. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Schulze-Briese and the staff at the Swiss Light Source, Switzerland, for help during synchrotron X-ray data collection, D. Moras for discussions and scientific support, M. Iskakova for assisting during X-ray data collection, S. Duclaud for technical assistance in ribosome preparation and crystallization as well as the staff of the Structural Biology Department core facility at IGBMC and S. Melnikov for helpful discussions. This work was supported by ANR BLANC07-3_190451 (M.Y.), ANR-07-PCVI-0015-01 (G.Y.) and by the European Commission SPINE2.

Author information

Authors and Affiliations

Authors

Contributions

L.B.J. performed ribosome purification, data collection, model building, refinement, data analysis and writing of the manuscript; N.D. performed data collection and model building; G.Y. performed crystallization; G.Y. and M.Y. initiated the project, performed model building and writing of the manuscript and acted as project leaders.

Corresponding authors

Correspondence to Gulnara Yusupova or Marat Yusupov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 1681 kb)

Supplementary Movie 1

30S domain closure. This animation shows the 30S subunit domain closure upon transition from the initiation to elongation state. (GIF 2578 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenner, L., Demeshkina, N., Yusupova, G. et al. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat Struct Mol Biol 17, 555–560 (2010). https://doi.org/10.1038/nsmb.1790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing