Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Opening of tandem calponin homology domains regulates their affinity for F-actin

Abstract

Many actin-binding proteins contain calponin homology (CH) domains, but the manner in which these domains interact with F-actin has been controversial. Crystal structures have shown the tandem CH domains of α-actinin to be in a compact, closed conformation, but the interpretations of complexes of such tandem CH domains with F-actin have been ambiguous. We show that the tandem CH domains of α-actinin bind F-actin in an open conformation, explaining mutations that cause human diseases and suggesting that the opening of these domains may be one of the main regulatory mechanisms for proteins with tandem CH domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopy of complexes.
Figure 2: Pseudoatomic models.
Figure 3: Steric clash between CH2 of α-actinin and actin.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lehman, W., Craig, R., Kendrick-Jones, J. & Sutherland-Smith, A.J. J. Muscle Res. Cell Motil. 25, 351–358 (2004).

    Article  CAS  Google Scholar 

  2. Galkin, V.E., Orlova, A., VanLoock, M.S. & Egelman, E.H. J. Mol. Biol. 331, 967–972 (2003).

    Article  CAS  Google Scholar 

  3. Broderick, M.J. & Winder, S.J. Adv. Protein Chem. 70, 203–246 (2005).

    Article  CAS  Google Scholar 

  4. Lee, S.H., Weins, A., Hayes, D.B., Pollak, M.R. & Dominguez, R. J. Mol. Biol. 376, 317–324 (2008).

    Article  CAS  Google Scholar 

  5. Borrego-Diaz, E. et al. J. Struct. Biol. 155, 230–238 (2006).

    Article  CAS  Google Scholar 

  6. Keep, N.H. et al. Structure 7, 1539–1546 (1999).

    Article  CAS  Google Scholar 

  7. Norwood, F.L., Sutherland-Smith, A.J., Keep, N.H. & Kendrick-Jones, J. Structure 8, 481–491 (2000).

    Article  CAS  Google Scholar 

  8. Sawyer, G.M., Clark, A.R., Robertson, S.P. & Sutherland-Smith, A.J. J. Mol. Biol. 390, 1030–1047 (2009).

    Article  CAS  Google Scholar 

  9. Liu, J., Taylor, D.W. & Taylor, K.A. J. Mol. Biol. 338, 115–125 (2004).

    Article  CAS  Google Scholar 

  10. McGough, A., Way, M. & DeRosier, D. J. Cell Biol. 126, 433–443 (1994).

    Article  CAS  Google Scholar 

  11. Hanein, D., Matsudaira, P. & DeRosier, D.J. J. Cell Biol. 139, 387–396 (1997).

    Article  CAS  Google Scholar 

  12. Galkin, V.E., Orlova, A., Cherepanova, O., Lebart, M.C. & Egelman, E.H. Proc. Natl. Acad. Sci. USA 105, 1494–1498 (2008).

    Article  CAS  Google Scholar 

  13. Kuhlman, P.A., Hemmings, L. & Critchley, D.R. FEBS Lett. 304, 201–206 (1992).

    Article  CAS  Google Scholar 

  14. Weins, A. et al. Proc. Natl. Acad. Sci. USA 104, 16080–16085 (2007).

    Article  CAS  Google Scholar 

  15. Levine, B.A., Moir, A.J., Patchell, V.B. & Perry, S.V. FEBS Lett. 263, 159–162 (1990).

    Article  CAS  Google Scholar 

  16. Corrado, K., Mills, P.L. & Chamberlain, J.S. FEBS Lett. 344, 255–260 (1994).

    Article  CAS  Google Scholar 

  17. Way, M., Pope, B. & Weeds, A.G. J. Cell Biol. 119, 835–842 (1992).

    Article  CAS  Google Scholar 

  18. Young, P. & Gautel, M. EMBO J. 19, 6331–6340 (2000).

    Article  CAS  Google Scholar 

  19. Garcia-Alvarez, B., Bobkov, A., Sonnenberg, A. & de Pereda, J.M. Structure 11, 615–625 (2003).

    Article  CAS  Google Scholar 

  20. Galkin, V.E., Orlova, A., Fattoum, A., Walsh, M.P. & Egelman, E.H. J. Mol. Biol. 359, 478–485 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant GM081303 (to E.H.E.) and by Austrian Science Fund grant P19060 (to K.D.-C.).

Author information

Authors and Affiliations

Authors

Contributions

A.S. and A.O. performed sample preparations; A.O. did the electron microscopy; V.E.G. performed the image analysis and model building; V.E.G., A.O., E.H.E. and K.D.-C. prepared the manuscript.

Corresponding author

Correspondence to Edward H Egelman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figure 1 (PDF 1785 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galkin, V., Orlova, A., Salmazo, A. et al. Opening of tandem calponin homology domains regulates their affinity for F-actin. Nat Struct Mol Biol 17, 614–616 (2010). https://doi.org/10.1038/nsmb.1789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing