Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the carnitine transporter and insights into the antiport mechanism

Abstract

CaiT is a membrane antiporter that catalyzes the exchange of l-carnitine with γ-butyrobetaine across the Escherichia coli membrane. To obtain structural insights into the antiport mechanism, we solved the crystal structure of CaiT at a resolution of 3.15 Å. We crystallized CaiT as a homotrimer complex, in which each protomer contained 12 transmembrane helices and 4 l-carnitine molecules outlining the transport pathway across the membrane. Mutagenesis studies revealed a primary binding site at the center of the protein and a secondary substrate-binding site at the bottom of the intracellular vestibule. These results, together with the insights obtained from structural comparison with structurally homologous transporters, provide mechanistic insights into the association between substrate translocation and the conformational changes of CaiT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall structure of CaiT.
Figure 2: The substrate-binding sites.
Figure 3: Comparison of the structures of CaiT and LeuT.
Figure 4: Characterization of the antiport activity for wild-type (WT) and mutant CaiT.
Figure 5: Structural superposition of CaiT (orange) with BetP (green).

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Poolman, B. Precursor/product antiport in bacteria. Mol. Microbiol. 4, 1629–1636 (1990).

    Article  CAS  Google Scholar 

  2. Law, C.J., Maloney, P.C. & Wang, D.N. Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62, 289–305 (2008).

    Article  CAS  Google Scholar 

  3. Dierks, T., Riemer, E. & Krämer, R. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria. Biochim. Biophys. Acta 943, 231–244 (1988).

    Article  CAS  Google Scholar 

  4. Anantharam, V., Allison, M.J. & Maloney, P.C. Oxalate:formate exchange. The basis for energy coupling in Oxalobacter. J. Biol. Chem. 264, 7244–7250 (1989).

    CAS  PubMed  Google Scholar 

  5. Poolman, B., Royer, T.J., Mainzer, S.E. & Schmidt, B.F. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J. Bacteriol. 171, 244–253 (1989).

    Article  CAS  Google Scholar 

  6. Pebay-Peyroula, E. et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44 (2003).

    Article  CAS  Google Scholar 

  7. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  CAS  Google Scholar 

  8. Jencks, W.P. The utilization of binding energy in coupled vectorial processes. Adv. Enzymol. 51, 75–106 (1980).

    CAS  PubMed  Google Scholar 

  9. Tanford, C. Mechanism of free energy coupling in active transport. Annu. Rev. Biochem. 52, 379–409 (1983).

    Article  CAS  Google Scholar 

  10. Fritz, I.B. & Yue, K.T. Effects of carnitine on acetyl-coA oxidation by heart muscle mitochondria. Am. J. Physiol. 206, 531–535 (1964).

    Article  CAS  Google Scholar 

  11. Treem, W.R., Stanley, C.A., Finegold, D.N., Hale, D.E. & Coates, P.M. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N. Engl. J. Med. 319, 1331–1336 (1988).

    Article  CAS  Google Scholar 

  12. Nalecz, K.A., Miecz, D., Berezowski, V. & Cecchelli, R. Carnitine: transport and physiological functions in the brain. Mol. Aspects Med. 25, 551–567 (2004).

    Article  CAS  Google Scholar 

  13. Jung, K., Jung, H. & Kleber, H.P. Regulation of l-carnitine metabolism in Escherichia coli. J. Basic Microbiol. 27, 131–137 (1987).

    Article  CAS  Google Scholar 

  14. Kleber, H.P. Bacterial carnitine metabolism. FEMS Microbiol. Lett. 147, 1–9 (1997).

    Article  CAS  Google Scholar 

  15. Seim, H., Ezold, R., Kleber, H.P. & Strack, E. Metabolism of l-carnitine in enterobacteria. Z. Allg. Mikrobiol. 20, 591–594 (1980).

    Article  CAS  Google Scholar 

  16. Tamai, I. et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419, 107–111 (1997).

    Article  CAS  Google Scholar 

  17. Wu, X., Prasad, P.D., Leibach, F.H. & Ganapathy, V. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem. Biophys. Res. Commun. 246, 589–595 (1998).

    Article  CAS  Google Scholar 

  18. Tamai, I. et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273, 20378–20382 (1998).

    Article  CAS  Google Scholar 

  19. Tein, I. Carnitine transport: pathophysiology and metabolism of known molecular defects. J. Inherit. Metab. Dis. 26, 147–169 (2003).

    Article  CAS  Google Scholar 

  20. Jung, H. et al. CaiT of Escherichia coli, a new transporter catalyzing l-carnitine/γ-butyrobetaine exchange. J. Biol. Chem. 277, 39251–39258 (2002).

    Article  CAS  Google Scholar 

  21. Peter, H., Burkovski, A. & Krämer, R. Isolation, characterization, and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine. J. Bacteriol. 178, 5229–5234 (1996).

    Article  CAS  Google Scholar 

  22. Kappes, R.M., Kempf, B. & Bremer, E. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J. Bacteriol. 178, 5071–5079 (1996).

    Article  CAS  Google Scholar 

  23. Boscari, A., Mandon, K., Dupont, L., Poggi, M.C. & Le Rudulier, D. BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. J. Bacteriol. 184, 2654–2663 (2002).

    Article  CAS  Google Scholar 

  24. Vinothkumar, K.R., Raunser, S., Jung, H. & Kühlbrandt, W. Oligomeric structure of the carnitine transporter CaiT from Escherichia coli. J. Biol. Chem. 281, 4795–4801 (2006).

    Article  CAS  Google Scholar 

  25. Ressl, S. et al. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458, 47–52 (2009).

    Article  CAS  Google Scholar 

  26. Yamashita, A. et al. Crystal structure of a bacterial homologue of Na+/Cldependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  Google Scholar 

  27. Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008).

    Article  CAS  Google Scholar 

  28. Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322, 709–713 (2008).

    Article  CAS  Google Scholar 

  29. Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460, 1040–1043 (2009).

    Article  CAS  Google Scholar 

  30. Gao, X. et al. Structure and mechanism of an amino acid antiporter. Science 324, 1565–1568 (2009).

    Article  CAS  Google Scholar 

  31. Shaffer, P.L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).

    Article  CAS  Google Scholar 

  32. Schiefner, A. et al. Cation-p interactions as determinants for binding of the compatible solutes betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J. Biol. Chem. 279, 5588–5596 (2004).

    Article  CAS  Google Scholar 

  33. Singh, S.K., Piscitelli, C.L., Yamashita, A. & Gouaux, E.A. Competitive inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661 (2008).

    Article  CAS  Google Scholar 

  34. Shi, L., Quick, M., Zhao, Y., Weinstein, H. & Javitch, J.A. The mechanism of a neurotransmitter: sodium symporter-inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol. Cell 30, 667–677 (2008).

    Article  CAS  Google Scholar 

  35. Quick, M. et al. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl. Acad. Sci. USA 106, 5563–5568 (2009).

    Article  CAS  Google Scholar 

  36. DeLano, W.L. The PyMOL Molecular Graphics System. (DeLano Scientific, San Carlos, California, USA, 2002) <http://www.pymol.org.>.

  37. Drew, D., Lerch, M., Kunji, E., Slotboom, D.J. & de Gier, J.W. Optimization of membrane protein overexpression and purification using GFP fusions. Nat. Methods 3, 303–313 (2006).

    Article  CAS  Google Scholar 

  38. Collaborative Computational Project. Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  39. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  40. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  Google Scholar 

  41. Terwilliger, T.C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    Article  CAS  Google Scholar 

  42. Cowtan, K. An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography, DM 31, 34–38 (1994).

    Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  44. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  45. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  46. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  47. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  48. Jung, H., Tebbe, S., Schmid, R. & Jung, K. Unidirectional reconstitution and characterization of purified Na+/proline transporter of Escherichia coli. Biochemistry 37, 11083–11088 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the European Synchrotron Radiation Facility in France, the Spring-8 (beamline BL41XU) in Japan and the Swiss Light Source (beamline X06SA) in Switzerland for help with data collection, J. Tang and Y.-B. Wang for technical support and J. Chen for discussions. This research was financially supported by the National Key Basic Research Program (grant numbers 2009CB918600, 2009CB918803), the National Natural Science Foundation of China (grant number 30721003), the National High Technology Research and Development Program of China (grant number 2006AA02A319) and the Knowledge Innovation Program of the Chinese Academy of Sciences (grant number KSCX2-YW-R-123).

Author information

Authors and Affiliations

Authors

Contributions

L.T. performed expression, purification, crystallization and the crystal structure determination; L.B. and W.-h.W. contributed to vector construction and protein expression; L.B. performed the mutagenesis studies and transport activity measurements; T.J. and L.T. designed the research; T.J. supervised the work; L.T. and T.J. analyzed the results and wrote the paper.

Corresponding author

Correspondence to Tao Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Bai, L., Wang, Wh. et al. Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nat Struct Mol Biol 17, 492–496 (2010). https://doi.org/10.1038/nsmb.1788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1788

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing