Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-step adhesive binding by classical cadherins

Abstract

Crystal structures of classical cadherins have revealed two dimeric configurations. In the first, N-terminal β-strands of EC1 domains 'swap' between partner molecules. The second configuration (the 'X dimer'), also observed for T-cadherin, is mediated by residues near the EC1-EC2 calcium binding sites, and N-terminal β-strands of partner EC1 domains, though held adjacent, do not swap. Here we show that strand-swapping mutants of type I and II classical cadherins form X dimers. Mutant cadherins impaired for X-dimer formation show no binding in short–time frame surface plasmon resonance assays, but in long–time frame experiments, they have homophilic binding affinities close to that of wild type. Further experiments show that exchange between monomers and dimers is slowed in these mutants. These results reconcile apparently disparate results from prior structural studies and suggest that X dimers are binding intermediates that facilitate the formation of strand-swapped dimers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of strand-swap mutant and wild-type E-cadherin fragments.
Figure 2: Structure of X dimer formed by strand-swap mutant cadherin-6 and comparison with type II cadherin strand-swapped dimer.
Figure 3: Detailed view of the X-dimer interface formed by mutant cadherin-6.
Figure 4: Biophysical characterization of E-cadherin and cadherin-6.
Figure 5: Sedimentation velocity AUC and size-exclusion chromatography of X-dimer mutants.
Figure 6: Structure of E-cadherin EC1-EC2 K14E mutant.
Figure 7: Aggregation of cells transfected with X-dimer mutant E-cadherin.
Figure 8: Two-step model of classical cadherin binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627 (1995).

    Article  CAS  Google Scholar 

  2. Posy, S., Shapiro, L. & Honig, B. Sequence and structural determinants of strand swapping in cadherin domains: do all cadherins bind through the same adhesive interface? J. Mol. Biol. 378, 952–966 (2008).

    Article  CAS  Google Scholar 

  3. Nollet, F., Kools, P. & van Roy, F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299, 551–572 (2000).

    Article  CAS  Google Scholar 

  4. Patel, S.D., Chen, C.P., Bahna, F., Honig, B. & Shapiro, L. Cadherin-mediated cell-cell adhesion: sticking together as a family. Curr. Opin. Struct. Biol. 13, 690–698 (2003).

    Article  CAS  Google Scholar 

  5. Boggon, T. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002).

    Article  CAS  Google Scholar 

  6. Haussinger, D. et al. Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J. 23, 1699–1708 (2004).

    Article  Google Scholar 

  7. Parisini, E., Higgins, J.M., Liu, J.H., Brenner, M.B. & Wang, J.H. The crystal structure of human E-cadherin domains 1 and 2, and comparison with other cadherins in the context of adhesion mechanism. J. Mol. Biol. 373, 401–411 (2007).

    Article  CAS  Google Scholar 

  8. Shapiro, L. et al. Structural basis of cell-cell adhesion by cadherins. Nature 374, 327–337 (1995).

    Article  CAS  Google Scholar 

  9. Patel, S. et al. Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124, 1255–1268 (2006).

    Article  CAS  Google Scholar 

  10. Nose, A., Nagafuchi, A. & Takeichi, M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54, 993–1001 (1988).

    Article  CAS  Google Scholar 

  11. Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61, 147–155 (1990).

    Article  CAS  Google Scholar 

  12. Shan, W.S., Koch, A., Murray, J., Colman, D.R. & Shapiro, L. The adhesive binding site of cadherins revisited. Biophys. Chem. 82, 157–163 (1999).

    Article  CAS  Google Scholar 

  13. Al-Amoudi, A. & Frangakis, A.S. Structural studies on desmosomes. Biochem. Soc. Trans. 36, 181–187 (2008).

    Article  CAS  Google Scholar 

  14. He, W., Cowin, P. & Stokes, D. Untangling desmosomal knots with electron tomography. Science 302, 109–113 (2003).

    Article  CAS  Google Scholar 

  15. Kitagawa, M. et al. Mutation analysis of cadherin-4 reveals amino acid residues of EC1 important for the structure and function. Biochem. Biophys. Res. Commun. 271, 358–363 (2000).

    Article  CAS  Google Scholar 

  16. May, C. et al. Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature. Blood 105, 4337–4344 (2005).

    Article  CAS  Google Scholar 

  17. Tamura, K., Shan, W., Hendrickson, W., Colman, D. & Shapiro, L. Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron 20, 1153–1163 (1998).

    Article  CAS  Google Scholar 

  18. Harrison, O., Corps, E. & Kilshaw, P. Cadherin adhesion depends on a salt bridge at the N-terminus. J. Cell Sci. 118, 4123–4130 (2005).

    Article  CAS  Google Scholar 

  19. Ozawa, M. & Kemler, R. Correct proteolytic cleavage is required for the cell adhesive function of uvomorulin. J. Cell Biol. 111, 1645–1650 (1990).

    Article  CAS  Google Scholar 

  20. Nagar, B., Overduin, M., Ikura, M. & Rini, J.M. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380, 360–364 (1996).

    Article  CAS  Google Scholar 

  21. Pertz, O. et al. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J. 18, 1738–1747 (1999).

    Article  CAS  Google Scholar 

  22. Ciatto, C. et al. T-cadherin structures reveal a novel adhesive binding mechanism. Nat. Struct. Mol. Biol. advance online publication, doi:10:1038/nsmb.1781 (21 February 2010).

  23. Laur, O.Y., Klingelhofer, J., Troyanovsky, R.B. & Troyanovsky, S.M. Both the dimerization and immunochemical properties of E-cadherin EC1 domain depend on Trp156 residue. Arch. Biochem. Biophys. 400, 141–147 (2002).

    Article  CAS  Google Scholar 

  24. Schubert, W. et al. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111, 825–836 (2002).

    Article  CAS  Google Scholar 

  25. Katsamba, P. et al. Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc. Natl. Acad. Sci. USA 106, 11594–11599 (2009).

    Article  CAS  Google Scholar 

  26. Balbo, A., Brown, P.H., Braswell, E.H. & Schuck, P. Measuring protein-protein interactions by equilibrium sedimentation. Curr. Protoc. Immunol. 18, 18.8 (2007).

    Google Scholar 

  27. Brown, P.H., Balbo, A. & Schuck, P. Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. Curr. Protoc. Immunol. 18, 18.15 (2008).

    Google Scholar 

  28. Garcia De La Torre, J., Huertas, M.L. & Carrasco, B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78, 719–730 (2000).

    Article  CAS  Google Scholar 

  29. Niessen, C. & Gumbiner, B. Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J. Cell Biol. 156, 389–399 (2002).

    Article  CAS  Google Scholar 

  30. Shimoyama, Y., Tsujimoto, G., Kitajima, M. & Natori, M. Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem. J. 349, 159–167 (2000).

    Article  CAS  Google Scholar 

  31. Kii, I., Amizuka, N., Shimomura, J., Saga, Y. & Kudo, A. Cell-cell interaction mediated by cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage. J. Bone Miner. Res. 19, 1840–1849 (2004).

    Article  CAS  Google Scholar 

  32. Miloushev, V.Z. et al. Dynamic properties of a type II cadherin adhesive domain: implications for the mechanism of strand-swapping of classical cadherins. Structure 16, 1195–1205 (2008).

    Article  CAS  Google Scholar 

  33. Chen, C., Posy, S., Ben-Shaul, A., Shapiro, L. & Honig, B. Specificity of cell-cell adhesion by classical cadherins: critical role for low-affinity dimerization through β-strand swapping. Proc. Natl. Acad. Sci. USA 102, 8531–8536 (2005).

    Article  CAS  Google Scholar 

  34. Sivasankar, S., Zhang, Y., Nelson, W.J. & Chu, S. Characterizing the initial encounter complex in cadherin adhesion. Structure 17, 1075–1081 (2009).

    Article  CAS  Google Scholar 

  35. Duguay, D., Foty, R. & Steinberg, M. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–323 (2003).

    Article  CAS  Google Scholar 

  36. Steinberg, M.S. On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. Proc. Natl. Acad. Sci. USA 48, 1769–1776 (1962).

    Article  CAS  Google Scholar 

  37. Steinberg, M.S. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17, 281–286 (2007).

    Article  CAS  Google Scholar 

  38. Takeichi, M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59, 237–252 (1990).

    Article  CAS  Google Scholar 

  39. Hulpiau, P. & van Roy, F. Molecular evolution of the cadherin superfamily. Int. J. Biochem. Cell Biol. 41, 349–369 (2009).

    Article  CAS  Google Scholar 

  40. Stein, N. CHAINSAW: a program for mutating PDB files used as templates in molecular replacement. J. Appl. Crystallogr. 41, 641–643 (2008).

    Article  CAS  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants R01 GM062270 (L.S.), R01 GM30518 (B.H.) and U54 CA121852 (B.H. and L.S.) and by US National Science Foundation grant MCB-0416708 (B.H.). B.H. is an investigator of the Howard Hughes Medical Institute. X-ray data were acquired at the X4A and X4C beamlines of the National Synchrotron Light Source, Brookhaven National Laboratory; the X4 beamlines are operated by the New York Structural Biology Center.

Author information

Authors and Affiliations

Authors

Contributions

O.J.H., X.J., F.B. and K.J.C. determined and refined all the crystal structures; F.B., O.J.H. and J.B. produced all the wild-type and mutant proteins; P.S.K. performed and analyzed the SPR experiments; J.V. performed bioinformatic analysis; G.A. performed the AUC experiments; S.R.P. performed the cell-aggregation and immunofluorescence studies; O.J.H., B.H. and L.S. designed experiments, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Barry Honig or Lawrence Shapiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1, Supplementary Methods and Supplementary Text (PDF 4180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, O., Bahna, F., Katsamba, P. et al. Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 17, 348–357 (2010). https://doi.org/10.1038/nsmb.1784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing