Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange

Abstract

DNA synthesis by classical polymerases can be blocked by many lesions. These blocks are overcome by translesion synthesis, whereby the stalled classical, replicative polymerase is replaced by a nonclassical polymerase. In eukaryotes this polymerase exchange requires proliferating cell nuclear antigen (PCNA) monoubiquitination. To better understand the polymerase exchange, we developed a means of producing monoubiquitinated PCNA, by splitting the protein into two self-assembling polypeptides. We determined the X-ray crystal structure of monoubiquitinated PCNA and found that the ubiquitin moieties are located on the back face of PCNA and interact with it through their canonical hydrophobic surface. Moreover, the attachment of ubiquitin does not change PCNA's conformation. We propose that PCNA ubiquitination facilitates nonclassical polymerase recruitment to the back of PCNA by forming a new binding surface for nonclassical polymerases, consistent with a 'tool belt' model of the polymerase exchange.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulation of pol η activity by split PCNA and UbiPCNA.
Figure 2: Viability and UV sensitivity of yeast cells expressing split PCNA and UbiPCNA.
Figure 3: Structure of split PCNA.
Figure 4: Structure of UbiPCNA.
Figure 5: Interactions between ubiquitin and PCNA within UbiPCNA.
Figure 6: Model of the complex between UbiPCNA and pol η.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Prakash, S., Sung, P. & Prakash, L. DNA-repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27, 33–70 (1993).

    Article  CAS  Google Scholar 

  2. Jentsch, S., McGrath, J.P. & Varshavsky, A. The yeast DNA-repair gene Rad6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131–134 (1987).

    Article  CAS  Google Scholar 

  3. Bailly, V., Lamb, J., Sung, P., Prakash, S. & Prakash, L. Specific complex-formation between yeast Rad6 and Rad18 proteins—a potential mechanism for targeting Rad6 ubiquitin-conjugating activity to DNA-damage sites. Genes Dev. 8, 811–820 (1994).

    Article  CAS  Google Scholar 

  4. Bailly, V., Lauder, S., Prakash, S. & Prakash, L. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem. 272, 23360–23365 (1997).

    Article  CAS  Google Scholar 

  5. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  Google Scholar 

  6. Stelter, P. & Ulrich, H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    Article  CAS  Google Scholar 

  7. Broomfield, S., Chow, B.L. & Xiao, W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl. Acad. Sci. USA 95, 5678–5683 (1998).

    Article  CAS  Google Scholar 

  8. Hofmann, R.M. & Pickart, C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  Google Scholar 

  9. Ulrich, H.D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388–3397 (2000).

    Article  CAS  Google Scholar 

  10. Prakash, S. & Prakash, L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev. 16, 1872–1883 (2002).

    Article  CAS  Google Scholar 

  11. Prakash, S., Johnson, R.E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317–353 (2005).

    Article  CAS  Google Scholar 

  12. Nelson, J.R., Lawrence, C.W. & Hinkle, D.C. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272, 1646–1649 (1996).

    Article  CAS  Google Scholar 

  13. Nelson, J.R., Lawrence, C.W. & Hinkle, D.C. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382, 729–731 (1996).

    Article  CAS  Google Scholar 

  14. Lawrence, C.W. Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair (Amst.) 1, 425–435 (2002).

    Article  CAS  Google Scholar 

  15. Lawrence, C.W. Cellular functions of DNA polymerase zeta and Rev1 protein. Adv. Protein Chem. 69 (DNA Repair and Replication), 167–203 (2004).

    Article  CAS  Google Scholar 

  16. Johnson, R.E., Prakash, S. & Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol eta. Science 283, 1001–1004 (1999).

    Article  CAS  Google Scholar 

  17. Washington, M.T., Johnson, R.E., Prakash, S. & Prakash, L. Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase eta. Proc. Natl. Acad. Sci. USA 97, 3094–3099 (2000).

    CAS  PubMed  Google Scholar 

  18. Johnson, R.E., Kondratick, C.M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999).

    Article  CAS  Google Scholar 

  19. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399, 700–704 (1999).

    Article  CAS  Google Scholar 

  20. Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821–1824 (2005).

    Article  CAS  Google Scholar 

  21. Guo, C. et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell. Biol. 26, 8892–8900 (2006).

    Article  CAS  Google Scholar 

  22. Kannouche, P.L., Wing, J. & Lehmann, A.R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  Google Scholar 

  23. Zhuang, Z. et al. Regulation of polymerase exchange between pol eta and pol delta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc. Natl. Acad. Sci. USA 105, 5361–5366 (2008).

    Article  CAS  Google Scholar 

  24. Haracska, L., Kondratick, C.M., Unk, I., Prakash, S. & Prakash, L. Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol. Cell 8, 407–415 (2001).

    Article  CAS  Google Scholar 

  25. Garg, P. & Burgers, P.M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc. Natl. Acad. Sci. USA 102, 18361–18366 (2005).

    Article  CAS  Google Scholar 

  26. Haracska, L., Unk, I., Prakash, L. & Prakash, S. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 103, 6477–6482 (2006).

    Article  CAS  Google Scholar 

  27. Krishna, T.S.R., Kong, X.-P., Gary, S., Burgers, P.M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233–1243 (1994).

    Article  CAS  Google Scholar 

  28. Hurley, J.H., Lee, S. & Prag, G. Ubiquitin-binding domains. Biochem. J. 399, 361–372 (2006).

    Article  CAS  Google Scholar 

  29. Hicke, L., Schubert, H.L. & Hill, C.P. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  30. Bunting, K.A., Roe, S.M. & Pearl, L.H. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. EMBO J. 22, 5883–5892 (2003).

    Article  CAS  Google Scholar 

  31. Indiani, C., McInerney, P., Georgescu, R., Goodman, M.F. & O′Donnell, M. A sliding-clamp tool belt binds high- and low-fidelity DNA polymerases simultaneously. Mol. Cell 19, 805–815 (2005).

    Article  CAS  Google Scholar 

  32. Bomar, M.G., Pai, M.T., Tzeng, S.R., Li, S.S.C. & Zhou, P. Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta. EMBO Rep. 8, 247–251 (2007).

    Article  CAS  Google Scholar 

  33. Acharya, N. et al. Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 105, 17724–17729 (2008).

    Article  CAS  Google Scholar 

  34. Trincao, J. et al. Structure of the catalytic core of S-cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. Mol. Cell 8, 417–426 (2001).

    Article  CAS  Google Scholar 

  35. Alt, A. et al. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase. Science 318, 967–970 (2007).

    Article  CAS  Google Scholar 

  36. Hishiki, A. et al. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J. Biol. Chem. 284, 10552–10560 (2009).

    Article  CAS  Google Scholar 

  37. Freudenthal, B.D., Ramaswamy, S., Hingorani, M.M. & Washington, M.T. Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis. Biochemistry 47, 13354–13361 (2008).

    Article  CAS  Google Scholar 

  38. Swan, M.K., Johnson, R.E., Prakash, L., Prakash, S. & Aggarwal, A.K. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat. Struct. Mol. Biol. 16, 979–986 (2009).

    Article  CAS  Google Scholar 

  39. Howell, C.A., Kondratick, C.M. & Washington, M.T. Substitution of a residue contacting the triphosphate moiety of the incoming nucleotide increases the fidelity of yeast DNA polymerase zeta. Nucleic Acids Res. 36, 1731–1740 (2008).

    Article  CAS  Google Scholar 

  40. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D Biol. Crystallogr. 55, 1718–1725 (1999).

    Article  CAS  Google Scholar 

  41. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).

    Article  CAS  Google Scholar 

  42. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  43. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  45. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    Article  CAS  Google Scholar 

  46. Harel, M., Kleywegt, G.J., Ravelli, R.B.G., Silman, I. & Sussman, J.L. Crystal structure of an acetylcholinesterase–fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure 3, 1355–1366 (1995).

    Article  CAS  Google Scholar 

  47. Iwata, S. et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc(1) complex. Science 281, 64–71 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project described was supported by award number R01GM081433 from the US National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health. We thank E. Cho and S. Perkins for technical assistance. We thank C. Kondratick, L. Dieckman, J. Pryor and M. Wold for discussions.

Author information

Authors and Affiliations

Authors

Contributions

B.D.F. performed the biochemical and genetics experiments. B.D.F. and L.G. collected the X-ray diffraction data. B.D.F., L.G. and S.R. analyzed the X-ray diffraction data. M.T.W. supervised the study. B.D.F. and M.T.W. wrote the manuscript. All authors discussed the results and approved the manuscript.

Corresponding author

Correspondence to M Todd Washington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenthal, B., Gakhar, L., Ramaswamy, S. et al. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange. Nat Struct Mol Biol 17, 479–484 (2010). https://doi.org/10.1038/nsmb.1776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing