Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

APOBEC3 proteins mediate the clearance of foreign DNA from human cells



Bacteria evolved restriction endonucleases to prevent interspecies DNA transmission and bacteriophage infection. Here we show that human cells possess an analogous mechanism. APOBEC3A is induced by interferon following DNA detection, and it deaminates foreign double-stranded DNA cytidines to uridines. These atypical DNA nucleosides are converted by the uracil DNA glycosylase UNG2 to abasic lesions, which lead to foreign DNA degradation. This mechanism is evident in cell lines and primary monocytes, where up to 97% of cytidines in foreign DNA are deaminated. In contrast, cellular genomic DNA appears unaffected. Several other APOBEC3s also restrict foreign gene transfer. Related proteins exist in all vertebrates, indicating that foreign DNA restriction may be a conserved innate immune defense mechanism. The efficiency and fidelity of genetic engineering, gene therapy, and DNA vaccination are likely to be influenced by this anti-DNA defense system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: APOBEC3A is expressed in monocytes and macrophages and is induced by interferon and CpG DNA.
Figure 2: Foreign DNA restriction by APOBEC3A.
Figure 3: APOBEC3A deaminates transfected plasmid DNA and generates lesions for uracil DNA glycosylase.
Figure 4: APOBEC3A mutates foreign DNA in primary human cells.
Figure 5: Foreign DNA restriction by multiple human APOBEC3 proteins.
Figure 6: Lack of detectable genomic DNA mutation in cells that restrict foreign DNA.
Figure 7: A model for foreign DNA restriction.


  1. 1

    Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Uematsu, S. & Akira, S. Toll-like receptors and type I interferons. J. Biol. Chem. 282, 15319–15323 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Roberts, T.L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    Article  Google Scholar 

  6. 6

    Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J. & Alnemri, E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Sadler, A.J. & Williams, B.R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8, 559–568 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Neil, S.J., Zang, T. & Bieniasz, P.D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Roberts, W.K., Hovanessian, A., Brown, R.E., Clemens, M.J. & Kerr, I.M. Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264, 477–480 (1976).

    CAS  Article  Google Scholar 

  13. 13

    Kerr, I.M., Brown, R.E. & Hovanessian, A.G. Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature 268, 540–542 (1977).

    CAS  Article  Google Scholar 

  14. 14

    Meurs, E. et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379–390 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Bass, B.L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988).

    CAS  Article  Google Scholar 

  16. 16

    Di Noia, J.M. & Neuberger, M.S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Longerich, S., Basu, U., Alt, F. & Storb, U. AID in somatic hypermutation and class switch recombination. Curr. Opin. Immunol. 18, 164–174 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Chiu, Y.L. & Greene, W.C. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu. Rev. Immunol. 26, 317–353 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Malim, M.H. & Emerman, M. HIV-1 accessory proteins–ensuring viral survival in a hostile environment. Cell Host Microbe 3, 388–398 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Bishop, K.N. et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr. Biol. 14, 1392–1396 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Bogerd, H.P., Wiegand, H.L., Doehle, B.P., Lueders, K.K. & Cullen, B.R. APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res. 34, 89–95 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Bogerd, H.P. et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc. Natl. Acad. Sci. USA 103, 8780–8785 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Muckenfuss, H. et al. APOBEC3 proteins inhibit human LINE-1 retrotransposition. J. Biol. Chem. 281, 22161–22172 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Chiu, Y.L. et al. High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl. Acad. Sci. USA 103, 15588–15593 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Chen, H. et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr. Biol. 16, 480–485 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Narvaiza, I. et al. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog. 5, e1000439 (2009).

    Article  Google Scholar 

  27. 27

    Vartanian, J.P., Guétard, D., Henry, M. & Wain-Hobson, S. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320, 230–233 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Suspène, R. et al. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc. Natl. Acad. Sci. USA 102, 8321–8326 (2005).

    Article  Google Scholar 

  29. 29

    Peng, G. et al. Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110, 393–400 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Tanaka, Y. et al. Anti-viral protein APOBEC3G is induced by interferon-α stimulation in human hepatocytes. Biochem. Biophys. Res. Commun. 341, 314–319 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Bonvin, M. et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43, 1364–1374 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Koning, F.A. et al. Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J. Virol. 83, 9474–9485 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Peng, G., Lei, K.J., Jin, W., Greenwell-Wild, T. & Wahl, S.M. Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti–HIV-1 activity. J. Exp. Med. 203, 41–46 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Wang, F.X., Huang, J., Zhang, H., Ma, X. & Zhang, H. APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells. J. Gen. Virol. 89, 722–730 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Conticello, S.G., Langlois, M.A., Yang, Z. & Neuberger, M.S. DNA deamination in immunity: AID in the context of its APOBEC relatives. Adv. Immunol. 94, 37–73 (2007).

    CAS  Article  Google Scholar 

  36. 36

    LaRue, R.S. et al. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Mol. Biol. 9, 104 (2008).

    Article  Google Scholar 

  37. 37

    Kavli, B., Otterlei, M., Slupphaug, G. & Krokan, H.E. Uracil in DNA–general mutagen, but normal intermediate in acquired immunity. DNA Repair (Amst.) 6, 505–516 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Aguiar, R.S., Lovsin, N., Tanuri, A. & Peterlin, B.M. Vpr.A3A chimera inhibits HIV replication. J. Biol. Chem. 283, 2518–2525 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Henry, M. et al. Genetic editing of HBV DNA by monodomain human APOBEC3 cytidine deaminases and the recombinant nature of APOBEC3G. PLoS One 4, e4277 (2009).

    Article  Google Scholar 

  40. 40

    Di Noia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Suspène, R., Henry, M., Guillot, S., Wain-Hobson, S. & Vartanian, J.P. Recovery of APOBEC3-edited human immunodeficiency virus G→A hypermutants by differential DNA denaturation PCR. J. Gen. Virol. 86, 125–129 (2005).

    Article  Google Scholar 

  42. 42

    Ishii, K.J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    CAS  Article  Google Scholar 

  44. 44

    Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    CAS  Article  Google Scholar 

  45. 45

    Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Liddament, M.T., Brown, W.L., Schumacher, A.J. & Harris, R.S. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr. Biol. 14, 1385–1391 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvák, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Ishii, K.J. & Akira, S. Innate immune recognition of, and regulation by, DNA. Trends Immunol. 27, 525–532 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  Article  Google Scholar 

  50. 50

    Kawane, K. & Nagata, S. Nucleases in programmed cell death. Methods Enzymol. 442, 271–287 (2008).

    CAS  Article  Google Scholar 

  51. 51

    Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 202, 1333–1339 (2005).

    CAS  Article  Google Scholar 

  52. 52

    Conticello, S.G., Thomas, C.J., Petersen-Mahrt, S. & Neuberger, M.S. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol. Biol. Evol. 22, 367–377 (2005).

    CAS  Article  Google Scholar 

  53. 53

    Ewing, B., Hillier, L., Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    CAS  Article  Google Scholar 

Download references


We thank J. Albin, J. Hultquist, D. Kaufman, L. Lackey and D. Trono for thoughtful feedback, P. Hackett and S. McIvor (University of Minnesota) for SB reagents, H. Bull (University of Saskatchewan) for help with antibody production, B. Thielen and J. Lingappa (Univ. of Washington) for sharing in vitro DNA deaminase assay protocols, M. Cornwell and J. Valesano for technical assistance, B. Cullen (Duke University), R. Tsien (University of California, San Diego), and J. DiNoia (Institut de recherches cliniques de Montréal) for plasmid constructs and J. Hanten (3M) for reagents and helpful discussions in the early stages of these studies. M.D.S. was supported in part by a 3M Graduate Fellowship and a Cancer Biology Training Grant (CA009138). M.B.B. was supported in part by the Children's Cancer Research Fund, Minneapolis, Minnesota, USA. This work was supported by grants from the US National Institutes of Health, GM090437 and AI064046.

Author information




M.D.S. worked together with R.S.H. on all aspects of these studies and did most of the experiments; M.B.B. and M.L. established the TK mutation assay and the in vitro DNA deamination assays, respectively; J.L. performed the virus infectivity experiments.

Corresponding author

Correspondence to Reuben S Harris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–4 and Supplementary Methods (PDF 1439 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stenglein, M., Burns, M., Li, M. et al. APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol 17, 222–229 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing