Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An APP inhibitory domain containing the Flemish mutation residue modulates γ-secretase activity for Aβ production

Abstract

γ-secretase is an aspartyl protease that cleaves multiple substrates within their transmembrane domains. γ-secretase processes the amyloid precursor protein (APP) to generate γ-amyloid (Aγ) peptides associated with Alzheimer's disease. Here, we show that APP possesses a substrate inhibitory domain (ASID) that negatively modulates γ-secretase activity for Aγ production by binding to an allosteric site within the γ-secretase complex. Alteration of this ASID by deletion or mutation, as is seen with the Flemish mutation (A21G), reduces its inhibitory potency and promotes Aγ production. Notably, peptides derived from ASID show selective inhibition of γ-secretase activity for Aγ production over Notch1 processing. Therefore, this mode of regulation represents an unprecedented mechanism for modulating γ-secretase, providing insight into the molecular basis of Alzheimer's disease pathogenesis and a potential strategy for the development of therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The processing of the amyloid precursor protein (APP) by α-, β- and γ-secretases.
Figure 2: Effect of internal Aβ FAD mutations on γ-secretase activity.
Figure 3: Deletion of an ASID generates a more efficient substrate of γ-secretase both in vitro and in cells.
Figure 4: The ASID peptide noncompetitively inhibits γ-secretase.
Figure 5: Photoactivable ASID peptide directly binds to γ-secretase.
Figure 6: Effect of ASID binding on the photoinsertion of photoactivatable transition state inhibitors JC8 and GY-4 into PS1–NTF.
Figure 7: Retro-inverso peptide derivatives of ASID selectively inhibit cellular γ-secretase activity for the processing of APP but not Notch1.

Similar content being viewed by others

References

  1. Hardy, J. & Allsop, D. Amyloid deposition as the central event in the etiology of Alzheimer's disease. Trends Pharmacol. Sci. 12, 383–388 (1991).

    Article  CAS  Google Scholar 

  2. Jarrett, J.T., Berger, E.P. & Lansbury, P.T., Jr. The C-terminus of the β protein is critical in amyloidogenesis. Ann. NY Acad. Sci. 695, 144–148 (1993).

    Article  CAS  Google Scholar 

  3. Zhao, G. et al. Identification of a new presenilin-dependent ζ-cleavage site within the transmembrane domain of amyloid precursor protein. J. Biol. Chem. 279, 50647–50650 (2004).

    Article  CAS  Google Scholar 

  4. Sastre, M. et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2, 835–841 (2001).

    Article  CAS  Google Scholar 

  5. Cao, X. & Sudhof, T.C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  Google Scholar 

  6. De Strooper, B. Aph-1, Pen-2, and nicastrin with presenilin generate an active γ-secretase complex. Neuron 38, 9–12 (2003).

    Article  CAS  Google Scholar 

  7. Li, Y.M. et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).

    Article  CAS  Google Scholar 

  8. Wolfe, M.S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 (1999).

    Article  CAS  Google Scholar 

  9. Esler, W.P. et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat. Cell Biol. 2, 428–434 (2000).

    Article  CAS  Google Scholar 

  10. Thinakaran, G. et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181–190 (1996).

    Article  CAS  Google Scholar 

  11. Brown, M.S., Ye, J., Rawson, R.B. & Goldstein, J.L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  Google Scholar 

  12. Struhl, G. & Adachi, A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol. Cell 6, 625–636 (2000).

    Article  CAS  Google Scholar 

  13. Shah, S. et al. Nicastrin functions as a γ-secretase-substrate receptor. Cell 122, 435–447 (2005).

    Article  CAS  Google Scholar 

  14. Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    Article  CAS  Google Scholar 

  15. Kowalska, A. Amyloid precursor protein gene mutations responsible for early-onset autosomal dominant Alzheimer's disease. Folia Neuropathol. 41, 35–40 (2003).

    CAS  PubMed  Google Scholar 

  16. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  Google Scholar 

  17. Vassar, R. et al. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  Google Scholar 

  18. Suzuki, N. et al. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (β APP717) mutants. Science 264, 1336–1340 (1994).

    Article  CAS  Google Scholar 

  19. De Jonghe, C. et al. Pathogenic APP mutations near the γ-secretase cleavage site differentially affect Aβ secretion and APP C-terminal fragment stability. Hum. Mol. Genet. 10, 1665–1671 (2001).

    Article  CAS  Google Scholar 

  20. Lichtenthaler, S.F., Ida, N., Multhaup, G., Masters, C.L. & Beyreuther, K. Mutations in the transmembrane domain of APP altering γ-secretase specificity. Biochemistry 36, 15396–15403 (1997).

    Article  CAS  Google Scholar 

  21. Maruyama, K. et al. Familial Alzheimer's disease–linked mutations at Val717 of amyloid precursor protein are specific for the increased secretion of Aβ42(43). Biochem. Biophys. Res. Commun. 227, 730–735 (1996).

    Article  CAS  Google Scholar 

  22. Jankowsky, J.L. et al. Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ-secretase. Hum. Mol. Genet. 13, 159–170 (2004).

    Article  CAS  Google Scholar 

  23. Yin, Y.I. et al. γ-Secretase substrate concentration modulates the Aβ42/Aβ40 ratio: implications for Alzeheimer's disease. J. Biol. Chem. 282, 23639–23644 (2007).

    Article  CAS  Google Scholar 

  24. Haass, C., Hung, A.Y., Selkoe, D.J. & Teplow, D.B. Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid β–protein precursor. J. Biol. Chem. 269, 17741–17748 (1994).

    CAS  PubMed  Google Scholar 

  25. De Jonghe, C. et al. Flemish and Dutch mutations in amyloid β precursor protein have different effects on amyloid β secretion. Neurobiol. Dis. 5, 281–286 (1998).

    Article  CAS  Google Scholar 

  26. Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat. Neurosci. 4, 887–893 (2001).

    Article  CAS  Google Scholar 

  27. Tian, G. et al. Linear non-competitive inhibition of solubilized human γ-secretase by pepstatin A methylester, L685458, sulfonamides, and benzodiazepines. J. Biol. Chem. 277, 31499–31505 (2002).

    Article  CAS  Google Scholar 

  28. Kornilova, A.Y., Bihel, F., Das, C. & Wolfe, M.S. The initial substrate-binding site of γ-secretase is located on presenilin near the active site. Proc. Natl. Acad. Sci. USA 102, 3230–3235 (2005).

    Article  CAS  Google Scholar 

  29. Li, Y.M. et al. Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA 97, 6138–6143 (2000).

    Article  CAS  Google Scholar 

  30. Brody, D.L. et al. Amyloid-β dynamics correlate with neurological status in the injured human brain. Science 321, 1221–1224 (2008).

    Article  CAS  Google Scholar 

  31. Lichtenthaler, S.F., Multhaup, G., Masters, C.L. & Beyreuther, K. A novel substrate for analyzing Alzheimer's disease γ-secretase. FEBS Lett. 453, 288–292 (1999).

    Article  CAS  Google Scholar 

  32. Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems 22nd edn. (Wiley, New York, 1993).

    Google Scholar 

  33. Li, T., Ma, G., Cai, H., Price, D.L. & Wong, P.C. Nicastrin is required for assembly of presenilin/γ-secretase complexes to mediate Notch signaling and for processing and trafficking of β-amyloid precursor protein in mammals. J. Neurosci. 23, 3272–3277 (2003).

    Article  CAS  Google Scholar 

  34. Donoviel, D.B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810 (1999).

    Article  CAS  Google Scholar 

  35. Lai, M.T. et al. Presenilin-1 and presenilin-2 exhibit distinct yet overlapping γ-secretase activities. J. Biol. Chem. 278, 22475–22481 (2003).

    Article  CAS  Google Scholar 

  36. Dorman, G. & Prestwich, G.D. Benzophenone photophores in biochemistry. Biochemistry 33, 5661–5673 (1994).

    Article  CAS  Google Scholar 

  37. Chun, J., Yin, Y.I., Yang, G., Tarassishin, L. & Li, Y.M. Stereoselective synthesis of photoreactive peptidomimetic γ-secretase inhibitors. J. Org. Chem. 69, 7344–7347 (2004).

    Article  CAS  Google Scholar 

  38. Yang, G. et al. Stereo-controlled synthesis of novel photoreactive γ-secretase inhibitors. Bioorg. Med. Chem. Lett. 19, 922–925 (2009).

    Article  CAS  Google Scholar 

  39. Das, C. et al. Designed helical peptides inhibit an intramembrane protease. J. Am. Chem. Soc. 125, 11794–11795 (2003).

    Article  CAS  Google Scholar 

  40. Kukar, T.L. et al. Substrate-targeting γ-secretase modulators. Nature 453, 925–929 (2008).

    Article  CAS  Google Scholar 

  41. Soto, C., Kindy, M.S., Baumann, M. & Frangione, B. Inhibition of Alzheimer's amyloidosis by peptides that prevent β-sheet conformation. Biochem. Biophys. Res. Commun. 226, 672–680 (1996).

    Article  CAS  Google Scholar 

  42. Chorev, M. The partial retro-inverso modification: a road traveled together. Biopolymers 80, 67–84 (2005).

    Article  CAS  Google Scholar 

  43. Guichard, G. et al. Antigenic mimicry of natural L-peptides with retro-inverso-peptidomimetics. Proc. Natl. Acad. Sci. USA 91, 9765–9769 (1994).

    Article  CAS  Google Scholar 

  44. Lee, Y.S. et al. Partial retro-inverso, retro, and inverso modifications of hydrazide linked bifunctional peptides for opioid and cholecystokinin (CCK) receptors. J. Med. Chem. 50, 165–168 (2007).

    Article  CAS  Google Scholar 

  45. Sakurai, K., Chung, H.S. & Kahne, D. Use of a retroinverso p53 peptide as an inhibitor of MDM2. J. Am. Chem. Soc. 126, 16288–16289 (2004).

    Article  CAS  Google Scholar 

  46. Schroeter, E.H., Kisslinger, J.A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  47. Krishnaswamy, S. Exosite-driven substrate specificity and function in coagulation. J. Thromb. Haemost. 3, 54–67 (2005).

    Article  CAS  Google Scholar 

  48. Overall, C.M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol. 22, 51–86 (2002).

    Article  CAS  Google Scholar 

  49. Mayer, S.C. et al. Discovery of begacestat, a Notch-1-sparing γ-secretase inhibitor for the treatment of Alzheimer's disease. J. Med. Chem. 51, 7348–7351 (2008).

    Article  CAS  Google Scholar 

  50. Cole, D.C. et al. (S)-N-(5-chlorothiophene-2-sulfonyl)-β,β-diethylalaninol a Notch-1-sparing γ-secretase inhibitor. Bioorg. Med. Chem. Lett. 19, 926–929 (2009).

    Article  CAS  Google Scholar 

  51. Bhattacharyya, R.P., Remenyi, A., Yeh, B.J. & Lim, W.A. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75, 655–680 (2006).

    Article  CAS  Google Scholar 

  52. Dickens, M. et al. A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277, 693–696 (1997).

    Article  CAS  Google Scholar 

  53. Kaneto, H. et al. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat. Med. 10, 1128–1132 (2004).

    Article  CAS  Google Scholar 

  54. Balendran, A. et al. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1. J. Biol. Chem. 275, 20806–20813 (2000).

    Article  CAS  Google Scholar 

  55. Balendran, A. et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr. Biol. 9, 393–404 (1999).

    Article  CAS  Google Scholar 

  56. Kaidanovich-Beilin, O. & Eldar-Finkelman, H. Peptides targeting protein kinases: strategies and implications. Physiology (Bethesda) 21, 411–418 (2006).

    CAS  Google Scholar 

  57. Pufall, M.A. & Graves, B.J. Autoinhibitory domains: modular effectors of cellular regulation. Annu. Rev. Cell Dev. Biol. 18, 421–462 (2002).

    Article  CAS  Google Scholar 

  58. McCafferty, D.G., Lessard, I.A. & Walsh, C.T. Mutational analysis of potential zinc-binding residues in the active site of the enterococcal D-Ala-D-Ala dipeptidase VanX. Biochemistry 36, 10498–10505 (1997).

    Article  CAS  Google Scholar 

  59. Hecimovic, S. et al. Mutations in APP have independent effects on Aβ and CTFγ generation. Neurobiol. Dis. 17, 205–218 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Scheinberg, J. Shafer, R. Zhou and S. Gardell for advice and comments on the manuscript, C.C. Shelton, L. Placanica and C. Crump for discussions and suggestions regarding this manuscript, H. Zheng (Baylor College of Medicine) for the APPc antibody, M.-t. Lai (Merck Research Laboratories) for the PS-1 NTF antibody, C.T. Walsh (Harvard Medical School) for the pIAD16 plasmid and R. Kopan for the ΔE-Notch1 construct (Washington University School of Medicine). This work is supported by US National Institutes of Health grant AG026660 (Y.-M.L.), the Alzheimer's Association (Zenith Fellows Award to Y.-M.L.) and the American Health Assistance Foundation (Y.-M.L.), the Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center and the William Randolph Hearst Fund in Experimental Therapeutics.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. and Y.-M.L designed the experiments and prepared this manuscript; Y.T. and D.C. synthesized and characterized the peptides; Y.T and B.B. made the constructs, purified the proteins and performed in vitro and cell-based assays; Y.T. conducted the kinetic and photoaffinity labeling experiments.

Corresponding author

Correspondence to Yue-Ming Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Bassit, B., Chau, D. et al. An APP inhibitory domain containing the Flemish mutation residue modulates γ-secretase activity for Aβ production. Nat Struct Mol Biol 17, 151–158 (2010). https://doi.org/10.1038/nsmb.1743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing