Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity

Abstract

In voltage-gated sodium, potassium and calcium channels, the functions of ion conduction and voltage sensing are performed by two distinct structural units: the pore domain and the voltage-sensing domain (VSD). In the hydrogen voltage-gated channel 1 (Hv1), the VSD, unusually, performs both functions. Hv1 was recently found to dimerize and to form channels made of two pores. However, the channels were also found to function when dimerization was prevented, raising a question about the functional role of dimerization. Here we show that the two subunits of the human Hv1 dimer influence one another during gating, with positive cooperativity shaping the response to voltage of the two pores. We also find that the two voltage sensors undergo conformational changes that precede pore opening and that these conformational changes are allosterically coupled between the two subunits. Our results point to an important role for dimerization in the modulation of Hv1 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gating perturbation of one Hv1 subunit spreads to the neighboring subunits.
Figure 2: Cooperative gating in Hv1 linked dimers made of 153C and WT subunits.
Figure 3: Cooperative gating in Hv1 dimers made of MS and ZS subunits.
Figure 4: Quantification of cooperativity in Hv1.
Figure 5: Hv1 voltage-sensor coupling detected by voltage-clamp fluorometry.
Figure 6: Proposed basic gating mechanism for the Hv1 channel.

Similar content being viewed by others

References

  1. Decoursey, T.E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003).

    Article  CAS  Google Scholar 

  2. Henderson, L.M., Chappell, J.B. & Jones, O.T. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem. J. 246, 325–329 (1987).

    Article  CAS  Google Scholar 

  3. DeCoursey, T.E., Morgan, D. & Cherny, V.V. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422, 531–534 (2003).

    Article  CAS  Google Scholar 

  4. Ramsey, I.S., Ruchti, E., Kaczmarek, J.S. & Clapham, D.E. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc. Natl. Acad. Sci. USA 106, 7642–7647 (2009).

    Article  CAS  Google Scholar 

  5. Ramsey, I.S., Moran, M.M., Chong, J.A. & Clapham, D.E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006).

    Article  CAS  Google Scholar 

  6. Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006).

    Article  CAS  Google Scholar 

  7. Tombola, F., Ulbrich, M.H. & Isacoff, E.Y. The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron 58, 546–556 (2008).

    Article  CAS  Google Scholar 

  8. Koch, H.P. et al. Multimeric nature of voltage-gated proton channels. Proc. Natl. Acad. Sci. USA 105, 9111–9116 (2008).

    Article  CAS  Google Scholar 

  9. Lee, S.Y., Letts, J.A. & Mackinnon, R. Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc. Natl. Acad. Sci. USA 105, 7692–7695 (2008).

    Article  CAS  Google Scholar 

  10. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  11. Tombola, F., Pathak, M.M. & Isacoff, E.Y. How does voltage open an ion channel? Annu. Rev. Cell Dev. Biol. 22, 23–52 (2006).

    Article  CAS  Google Scholar 

  12. Zagotta, W.N., Hoshi, T. & Aldrich, R.W. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103, 321–362 (1994).

    Article  CAS  Google Scholar 

  13. Schoppa, N.E. & Sigworth, F.J. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J. Gen. Physiol. 111, 313–342 (1998).

    Article  CAS  Google Scholar 

  14. Ledwell, J.L. & Aldrich, R.W. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. J. Gen. Physiol. 113, 389–414 (1999).

    Article  CAS  Google Scholar 

  15. Pathak, M., Kurtz, L., Tombola, F. & Isacoff, E. The cooperative voltage sensor motion that gates a potassium channel. J. Gen. Physiol. 125, 57–69 (2005).

    Article  CAS  Google Scholar 

  16. Yifrach, O. & MacKinnon, R. Energetics of pore opening in a voltage-gated K+ channel. Cell 111, 231–239 (2002).

    Article  CAS  Google Scholar 

  17. Ulbrich, M.H. & Isacoff, E.Y. Subunit counting in membrane-bound proteins. Nat. Methods 4, 319–321 (2007).

    Article  CAS  Google Scholar 

  18. DeCoursey, T.E. & Cherny, V.V. Pharmacology of voltage-gated proton channels. Curr. Pharm. Des. 13, 2400–2420 (2007).

    PubMed  Google Scholar 

  19. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  Google Scholar 

  20. Kohout, S.C., Ulbrich, M.H., Bell, S.C. & Isacoff, E.Y. Subunit organization and functional transitions in Ci-VSP. Nat. Struct. Mol. Biol. 15, 106–108 (2008).

    Article  CAS  Google Scholar 

  21. Koshland, D.E. Jr., Némethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385 (1966).

    Article  CAS  Google Scholar 

  22. Mannuzzu, L.M., Moronne, M.M. & Isacoff, E.Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216 (1996).

    Article  CAS  Google Scholar 

  23. Cherny, V.V., Markin, V.S. & DeCoursey, T.E. The voltage-activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient. J. Gen. Physiol. 105, 861–896 (1995).

    Article  CAS  Google Scholar 

  24. Choe, H., Zhou, H., Palmer, L.G. & Sackin, H. A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am. J. Physiol. 273, F516–F529 (1997).

    CAS  PubMed  Google Scholar 

  25. Gagnon, D.G. & Bezanilla, F. A single charged voltage sensor is capable of gating the Shaker K+ channel. J. Gen. Physiol. 133, 467–483 (2009).

    Article  CAS  Google Scholar 

  26. Mannuzzu, L.M. & Isacoff, E.Y. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J. Gen. Physiol. 115, 257–268 (2000).

    Article  CAS  Google Scholar 

  27. Schoppa, N.E., McCormack, K., Tanouye, M.A. & Sigworth, F.J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712–1715 (1992).

    Article  CAS  Google Scholar 

  28. Noceti, F. et al. Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels. J. Gen. Physiol. 108, 143–155 (1996).

    Article  CAS  Google Scholar 

  29. Hirschberg, B., Rovner, A., Lieberman, M. & Patlak, J. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J. Gen. Physiol. 106, 1053–1068 (1995).

    Article  CAS  Google Scholar 

  30. Aggarwal, S.K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996).

    Article  CAS  Google Scholar 

  31. Seoh, S.A., Sigg, D., Papazian, D.M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996).

    Article  CAS  Google Scholar 

  32. Papazian, D.M. et al. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293–1301 (1995).

    Article  CAS  Google Scholar 

  33. Morgan, D. & DeCoursey, T.E. Diversity of voltage gated proton channels. Front. Biosci. 8, s1266–s1279 (2003).

    Article  CAS  Google Scholar 

  34. Thomas, R.C. & Meech, R.W. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299, 826–828 (1982).

    Article  CAS  Google Scholar 

  35. Sonnleitner, A., Mannuzzu, L.M., Terakawa, S. & Isacoff, E.Y. Structural rearrangements in single ion channels detected optically in living cells. Proc. Natl. Acad. Sci. USA 99, 12759–12764 (2002).

    Article  CAS  Google Scholar 

  36. Larsson, H.P., Baker, O.S., Dhillon, D.S. & Isacoff, E.Y. Transmembrane movement of the shaker K+ channel S4. Neuron 16, 387–397 (1996).

    Article  CAS  Google Scholar 

  37. Musset, B. et al. Detailed comparison of expressed and native voltage-gated proton channel currents. J. Physiol. (Lond.) 586, 2477–2486 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Wiese and W. McFadden for valuable technical assistance. We thank D.E. Clapham (Children's Hospital Boston) for the cDNA of the human Hv1 channel and Y. Okamura (Okazaki Center for Integrative Biosciences) for the cDNA of Ci-VSP. We thank J.E. Hall and S.H. White for helpful discussion. This work was supported by the US National Institutes of Health (grant R01NS035549 to E.Y.I.), by the American Heart Association WSA (grant 09BGIA2160044 to F.T.) and by a postdoctoral fellowship from the American Heart Association to M.H.U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Y Isacoff.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, including Supplementary Figs. 1–8 (PDF 1336 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tombola, F., Ulbrich, M., Kohout, S. et al. The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity. Nat Struct Mol Biol 17, 44–50 (2010). https://doi.org/10.1038/nsmb.1738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing