Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice

Abstract

Nuclear pore complexes (NPCs) facilitate all nucleocytoplasmic transport. These massive protein assemblies are modular, with a stable structural scaffold supporting more dynamically attached components. The scaffold is made from multiple copies of the heptameric Y complex and the heteromeric Nic96 complex. We previously showed that members of these core subcomplexes specifically share an ACE1 fold with Sec31 of the COPII vesicle coat, and we proposed a lattice model for the NPC based on this commonality. Here we present the crystal structure of the heterotrimeric 134-kDa complex of Nup84–Nup145C–Sec13 of the Y complex. The heterotypic ACE1 interaction of Nup84 and Nup145C is analogous to the homotypic ACE1 interaction of Sec31 that forms COPII lattice edge elements and is inconsistent with the alternative 'fence-like' NPC model. We construct a molecular model of the Y complex and compare the architectural principles of COPII and NPC lattices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Nup84–Nup145C–Sec13.
Figure 2: The crown-crown interaction of Nup84–Nup145C is analogous to that of Sec31–Sec31.
Figure 3: Comparison of edge elements in the NPC and COPII lattices.
Figure 4: Nup84–Nup145C is a membrane curvature–stabilizing edge element in the NPC lattice.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Tran, E.J. & Wente, S.R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006).

    Article  CAS  Google Scholar 

  2. Weis, K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003).

    Article  CAS  Google Scholar 

  3. D'Angelo, M.A. & Hetzer, M.W. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol. 18, 456–466 (2008).

    Article  CAS  Google Scholar 

  4. Brohawn, S.G., Partridge, J.R., Whittle, J.R.R. & Schwartz, T.U. The nuclear pore complex has entered the atomic age. Structure 17, 1156–1168 (2009).

    Article  CAS  Google Scholar 

  5. Elad, N., Maimon, T., Frenkiel-Krispin, D., Lim, R.Y. & Medalia, O. Structural analysis of the nuclear pore complex by integrated approaches. Curr. Opin. Struct. Biol. 19, 226–232 (2009).

    Article  CAS  Google Scholar 

  6. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

    Article  CAS  Google Scholar 

  7. Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).

    Article  CAS  Google Scholar 

  8. Stoffler, D. et al. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328, 119–130 (2003).

    Article  CAS  Google Scholar 

  9. Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    Article  CAS  Google Scholar 

  10. Schwartz, T.U. Modularity within the architecture of the nuclear pore complex. Curr. Opin. Struct. Biol. 15, 221–226 (2005).

    Article  CAS  Google Scholar 

  11. Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6, 1114–1121 (2004).

    Article  CAS  Google Scholar 

  12. Dultz, E. et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180, 857–865 (2008).

    Article  CAS  Google Scholar 

  13. Rout, M.P., Aitchison, J.D., Magnasco, M.O. & Chait, B.T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).

    Article  CAS  Google Scholar 

  14. Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).

    Article  CAS  Google Scholar 

  15. Boehmer, T., Enninga, J., Dales, S., Blobel, G. & Zhong, H. Depletion of a single nucleoporin, Nup107, prevents the assembly of a subset of nucleoporins into the nuclear pore complex. Proc. Natl. Acad. Sci. USA 100, 981–985 (2003).

    Article  CAS  Google Scholar 

  16. Fabre, E. & Hurt, E. Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu. Rev. Genet. 31, 277–313 (1997).

    Article  CAS  Google Scholar 

  17. Galy, V., Mattaj, I.W. & Askjaer, P. Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. Mol. Biol. Cell 14, 5104–5115 (2003).

    Article  CAS  Google Scholar 

  18. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).

    Article  CAS  Google Scholar 

  19. Walther, T.C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    Article  CAS  Google Scholar 

  20. Makio, T. et al. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol. 185, 459–473 (2009).

    Article  CAS  Google Scholar 

  21. Whittle, J.R. & Schwartz, T.U. Architectural nucleoporins Nup157/170 and Nup133 are structurally related and descend from a second ancestral element. J. Biol. Chem. 284, 28442–28452 (2009).

    Article  CAS  Google Scholar 

  22. Jeudy, S. & Schwartz, T.U. Crystal structure of nucleoporin Nic96 reveals a novel, intricate helical domain architecture. J. Biol. Chem. 282, 34904–34912 (2007).

    Article  CAS  Google Scholar 

  23. Onischenko, E., Stanton, L.H., Madrid, A.S., Kieselbach, T. & Weis, K. Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J. Cell Biol. 185, 475–491 (2009).

    Article  CAS  Google Scholar 

  24. Schrader, N. et al. Structural basis of the nic96 subcomplex organization in the nuclear pore channel. Mol. Cell 29, 46–55 (2008).

    Article  CAS  Google Scholar 

  25. Handa, N. et al. The crystal structure of mouse Nup35 reveals atypical RNP motifs and novel homodimerization of the RRM domain. J. Mol. Biol. 363, 114–124 (2006).

    Article  CAS  Google Scholar 

  26. Siniossoglou, S. et al. Structure and assembly of the Nup84p complex. J. Cell Biol. 149, 41–54 (2000).

    Article  CAS  Google Scholar 

  27. Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 (2002).

    Article  CAS  Google Scholar 

  28. Kampmann, M. & Blobel, G. Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat. Struct. Mol. Biol. 16, 782–788 (2009).

    Article  CAS  Google Scholar 

  29. Brohawn, S.G., Leksa, N.C., Spear, E.D., Rajashankar, K.R. & Schwartz, T.U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 322, 1369–1373 (2008).

    Article  CAS  Google Scholar 

  30. Boehmer, T., Jeudy, S., Berke, I.C. & Schwartz, T.U. Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol. Cell 30, 721–731 (2008).

    Article  CAS  Google Scholar 

  31. Berke, I.C., Boehmer, T., Blobel, G. & Schwartz, T.U. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J. Cell Biol. 167, 591–597 (2004).

    Article  CAS  Google Scholar 

  32. Leksa, N.C., Brohawn, S.G. & Schwartz, T.U. The structure of the scaffold nucleoporin Nup120 reveals a new and unexpected domain architecture. Structure 17, 1082–1091 (2009).

    Article  CAS  Google Scholar 

  33. Hsia, K.C., Stavropoulos, P., Blobel, G. & Hoelz, A. Architecture of a coat for the nuclear pore membrane. Cell 131, 1313–1326 (2007).

    Article  CAS  Google Scholar 

  34. Debler, E.W. et al. A fence-like coat for the nuclear pore membrane. Mol. Cell 32, 815–826 (2008).

    Article  CAS  Google Scholar 

  35. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004).

    Article  Google Scholar 

  36. Fath, S., Mancias, J.D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007).

    Article  CAS  Google Scholar 

  37. Stagg, S.M. et al. Structural basis for cargo regulation of COPII coat assembly. Cell 134, 474–484 (2008).

    Article  CAS  Google Scholar 

  38. Brohawn, S.G. & Schwartz, T.U. A lattice model of the nuclear pore complex. Commun. Integr. Biol 2, 1–3 (2009).

    Article  Google Scholar 

  39. Brünger, A.T., DeLaBarre, B., Davies, J.M. & Weis, W.I. X-ray structure determination at low resolution. Acta Crystallogr. D Biol. Crystallogr. 65, 128–133 (2009).

    Article  Google Scholar 

  40. Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem. 280, 18442–18451 (2005).

    Article  CAS  Google Scholar 

  41. Ratner, G.A., Hodel, A.E. & Powers, M.A. Molecular determinants of binding between Gly-Leu-Phe-Gly nucleoporins and the nuclear pore complex. J. Biol. Chem. 282, 33968–33976 (2007).

    Article  CAS  Google Scholar 

  42. Zimmerberg, J. & Kozlov, M.M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006).

    Article  CAS  Google Scholar 

  43. McMahon, H.T. & Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  Google Scholar 

  44. Shibata, Y., Hu, J., Kozlov, M.M. & Rapoport, T.A. Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev. Biol. 25, 14.1–14.26 (2009).

    Article  Google Scholar 

  45. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  Google Scholar 

  46. Devos, D. et al. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl. Acad. Sci. USA 103, 2172–2177 (2006).

    Article  CAS  Google Scholar 

  47. Drin, G. et al. A general amphipathic α-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14, 138–146 (2007).

    Article  CAS  Google Scholar 

  48. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB Newslett. Protein Crystallogr. 26, 27–33 (1992).

    Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  51. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  52. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  53. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  54. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  PubMed  Google Scholar 

  55. Strokopytov, B.V. et al. Phased translation function revisited: structure solution of the cofilin-homology domain from yeast actin-binding protein 1 using six-dimensional searches. Acta Crystallogr. D Biol. Crystallogr. 61, 285–293 (2005).

    Article  Google Scholar 

  56. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  57. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  58. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  Google Scholar 

  59. Bond, C.S. & Schüttelkopf, A.W. ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallogr. D Biol. Crystallogr. 65, 510–512 (2009).

    Article  CAS  Google Scholar 

  60. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

  61. Jia, Y., Dewey, T.G., Shindyalov, I.N. & Bourne, P.E. A new scoring function and associated statistical significance for structure alignment by CE. J. Comput. Biol. 11, 787–799 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamlines 24-ID-C/-E at Argonne National Laboratory for assistance with data collection, the staff at beamline X29 at the National Synchrotron Light Source for assistance in screening cryoprotection conditions through mail-in data collection service, M. Gogala for his contributions to the Nup145C109–179–Sec13 structure, J. Iwasa for help with Figure 4, and members of the Schwartz laboratory for valuable discussions. This work was supported by National Institutes of Health grant GM77537, a Pew Scholar award (to T.U.S.) and a Koch Fellowship (to S.G.B).

Author information

Authors and Affiliations

Authors

Contributions

S.G.B. designed, conducted and analyzed biochemical, biophysical and crystallographic experiments and wrote the manuscript; T.U.S. advised on all aspects of the project and wrote the manuscript.

Corresponding author

Correspondence to Thomas U Schwartz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3876 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brohawn, S., Schwartz, T. Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice. Nat Struct Mol Biol 16, 1173–1177 (2009). https://doi.org/10.1038/nsmb.1713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing